• 제목/요약/키워드: superconducting materials

검색결과 469건 처리시간 0.031초

초고속 자기부상열차를 위한 초전도 반발식 자기부상 특성 해석 (Analysis on Superconducting Electrodynamic Suspension for Very High Speed Maglev)

  • 배덕권;이종민;조한욱;한형석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.198-200
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator. Superconducting EDS system is generated by the interaction between the magnetic field made by the induced the eddy current in the ground conductor and the moving magnetic field made by onboard superconducting magnet. The levitation force of EDS system, which is proportional to the strength of the moving magnetic field, becomes saturated according to the increase of the velocity Especially, the levitation force is influenced by the structure of HTS magnet and ground conductor. The 3-D numerical analysis with FEM was used to find the distribution of the magnetic field, the optimal coil structure, and the calculation of the levitation force.

  • PDF

Transport Current Distribution of a SmBCO Coated Conductor

  • Lee, Jae-Young;Yoo, Jae-Un;Lee, Sang-Moo;Jung, Ye-Hyun;Youm, Do-Jun;Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.7-10
    • /
    • 2007
  • The transport current distribution across the tape width of a SmBCO coated conductor was investigated. The current distribution was estimated by applying an inversion process to the field distribution measured in the vicinity of the tape by using a scanning Hall probe method. The obtained result is well consistent with one predicted by the Bean model, however, at the edges the current are not constant and do not generally plateau, on the contrary.

3 Tesla 초전도 전자석의 설계 및 시작 (Design and Development of 3 Tesla Superconducting Magnet)

  • 한송엽;차귀수;김순흠;김용권;최경달;강성수
    • 대한전기학회논문지
    • /
    • 제35권1호
    • /
    • pp.36-43
    • /
    • 1986
  • Superconducting magnet can be employed in many fields, such as, magnet for strong field, superconducting rotating machine and superconducting energy storage system. In this paper, the solenoid magnet design procedure and materials used in construction are described in detail, and those are the fundamentals of superconducting magnet study. The fabrication and test procedure of 3 Tesla superconduting magnet are also described. Nb-Ti is used as a superconducting wire, GFRP and Kapton are used for electrical insulation. Inner diameter of the magnet is 10 cm. According to the test results, the field at the central point of the magnet was 3 Tesla, evaporation rate per hour was 2.7 litter and current at that case was 315 A.

  • PDF

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

초전도 공진 코일의 효율성을 높이기 위한 차폐 재질에 따른 무선전력전송 효율비교 분석 (Characteristics of Wireless Power Transmission Using Superconductor Coil to Improve the Efficiency According to the Shielding Materials)

  • 이유경;정인성;황준원;최효상
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.684-688
    • /
    • 2016
  • The magnetic resonance method requires high quality factor(Q-factor) of resonators. Superconductor coils were used in this study to increase the Q-factor of wireless power transfer(WPT) systems in the magnetic resonance method. The results showed better transfer efficiency compared to copper coils. However, as superconducting coils should be cooled below critical temperatures, they require cooling containers. In this viewpoint, shielding materials for the cooling containers were applied for the analysis of the WPT characteristics. The shielding materials were applied at both ends of the transmitter and receiver coils. Iron, aluminum, and plastic were used for shielding. The electric field distribution and S-parameters (S11, S21) of superconducting coils were compared and analyzed according to the shield materials. As a result, plastic shielding showed better transfer efficiency, while iron and aluminum had less efficiency. Also, the maximum magnetic field distribution of the coils according to the shielding materials was analyzed. It was found that plastic shielding had 5 times bigger power transfer rate than iron or aluminum. It is suggested that the reliability of superconducting WPT systems can be secured if plastic is used for the cooling containers of superconducting resonance coils.

Cooling performance test of the superconducting fault current limiter

  • Yeom, H.;Hong, Y.J.;In, S.;Ko, J.;Kim, H.B.;Park, S.J.;Kim, H.;Kim, H.R.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.66-70
    • /
    • 2014
  • The superconducting fault current limiter (SFCL) is an electrical power system device that detects the fault current automatically and limits the magnitude of the current below a certain safety level. The SFCL module does not have any electrical resistance below the critical temperature, which facilitates lossless power transmission in the electric power system. Once given the fault current, however, the superconducting conductor exhibits extremely high electrical resistance, and the magnitude of the current is accordingly limited to a low value. Therefore, SFCL should be maintained at a temperature below the critical temperature, which justifies the cryogenic cooling system as a mandatory component. This report is a study which reported on the cooling system for the 154 kV-class hybrid SFCL owned by Korea Electric Power Corporation (KEPCO). Using the cryocooler, the temperature of liquid nitrogen (LN2) was lowered to 71 K. The cryostat was pressurized to 5 bars to improve the dielectric strength of nitrogen and suppress nitrogen bubble foaming during operation of SFCL. The SFCL module was immersed in the liquid nitrogen of the cryostat to maintain the superconducting state. The performance test results of the key components such as cryocooler, LN2 circulation pump, cold box, and pressure builder are shown in this paper.

Fabrication and superconducting property of $MgB_2$ tape with Al metal powder addition

  • Ko, Jae-Woong;Yoo, Jai-Moo;Chung, Kuk-Chae;Kim, Young-Kuk;Wang, Xiaolin;Dou, Shi Xue;Yoo, Sang-Im;Chung, Woo-Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권2호
    • /
    • pp.15-18
    • /
    • 2007
  • The sub micron sized spherical $MgB_2$ powders were synthesized by spray reaction method. $MgB_2$ tapes with Al addition were fabricated by Powder in Tube (PIT) method. The superconducting property and microstructure of Al doped $MgB_2$ tapes were characterized by X-ray diffraction, optical microscopy and transport measurement under magnetic field. The $J_c$ value of $MgB_2$ tapes was increased with 10 vol. % Al addition. The $J_c$ value of 5,500 A/$cm^2$ and 11,000 A/$cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape without heat treatment, respectively. The $J_c$ value of 8,000 A/$cm^2$ and 33,000 A/$cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape with heat treatment, respectively. The $J_c$-B curves show enhancement in $J_c$ (B), which suggests that the microstructure and transport properties of $MgB_2$ tapes have been improved with Al addition.

Relationship between Carrier Concentration and Superconducting Transition Temperature in Bi-Sr-Ca-Cu-O Superconductor

  • Kim, Myung Chul;Park, Soon Ja
    • 분석과학
    • /
    • 제5권2호
    • /
    • pp.223-228
    • /
    • 1992
  • 초산염(acetate)을 출발원료로 하여 $Bi_2Sr_2Ca_2Cu_3Oy$계 단일상 고온초전도체를 합성하려 하였으며 그 초전도상의 형성과정을 초전도전이온도 $T_c$ 및 전하나르게 농도와의 상관관계로부터 설명하고자 하였다. 초전도전이온도 $T_c$는 전기저항밀도 및 자화율을 측정하여 결정하였다. 시료로는 상기의 초전도체 출발조성물의 하소분말에 대해 $850^{\circ}C$, $860^{\circ}C$, 그리고 $870^{\circ}C$에서 40시간 동안 공기 중 열처리한 것을 이용하였다. 전하나르게농도는 홀계수를 측정하여 구하였다. 열처리과정 중의 초전도체 형성과정을 세라믹벌크내에 형성된 초전도체의 양 및 전하나르게농도 분포의 상관관계로부터 설명하였다.

  • PDF