• 제목/요약/키워드: superconducting magnets

검색결과 133건 처리시간 0.023초

Parametric Study for Conductor Design of KSTAR PF Coils

  • Yoon, Cheon-Seog;Qiuliang Wang;Kim, Myungkyu;Kim, Keeman;Lee, Dong-Ryul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.227-234
    • /
    • 2002
  • Large superconducting magnets such as ITER (International Thermonuclear Experimental Research) or KSTAR (Korean Superconducting Tokamak Advanced Research) magnet system adopted a cable-in-conduit conductor (CICC) using a forced-flow cooling system. Main optimization criteria for the conductor design of superconducting magnet system are stability margin and CICC cooling requirements. A zero-dimensional method is applied for the calculation of stability and the conductor optimization. In order to increase conductor performance, three different strands, ITER HP-I and HP-II, and KSTAR HP-Ⅲ, are tested. The strand characteristics of KSTAR HP-Ⅲ are measured in the Samsung's PPMS and Jc measurement system, and applied for this study. Also, the strand diameters, 0.81 mm and 0.78 mm are considered for this study, due to design change. Based on this result, the proposed configuration of CICC has been fabricated.

10 MW 급 초전도 풍력발전기용 고온초전도 레이스트렉 코일의 응력 해석 (Stress analysis of HTS racetrack coils for 10 MW class superconducting wind power generator)

  • 김광민;김경훈;박민원;유인근
    • 한국산업정보학회논문지
    • /
    • 제18권2호
    • /
    • pp.13-18
    • /
    • 2013
  • The authors designed a high temperature superconductor (HTS) racetrack coil for a 10 MW class superconducting synchronous wind turbine generator. The designed HTS racetrack coil was analyzed by an electromagnetic finite element method (FEM) to determine the magnetic field distribution, inductance, stress, etc. This paper describes the stress analysis and structure design result of the HTS racetrack coil for 10 MW class superconducting synchronous wind turbine generators, considering orthotropic material properties, a large magnetic field, and the resulting Lorentz force effect. Insulated HTS racetrack coils and no-insulation HTS racetrack coils were also considered. According to the results of the stress analysis, the no-insulation HTS racetrack coil results were better than the insulated HTS racetrack coil results.

고온초전도 계자코일의 설계 및 제작 (Design and Fabrication of High-Tc Superconducting Field coils)

  • 백승규;장현만;고락길;손명환;권영길;류강식;조영식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.775-777
    • /
    • 2000
  • Superconducting racetrack coils are used in areas of generators, motors, wiggler magnets and so on. Especially now a days many advanced nations including U.S., Japan are developing high temperature superconducting(HTS) wire which has better performance than low temperature superconducting(LTS) wire. Most of HTS wires such as Bi-2223 are manufactured with PIT(Power In Tube Method) process, so the shape of the wire looks like tape different from LTS wire of round shape as normal conductors. Generally HTS racetrack coils are composed of a few partial double-pancake colis and then the double-pancakes are jointed each other according to their applications.

  • PDF

Fault Current Limitation by a Superconducting Coil with a Reversely Magnetized Core for a Fault Current Controller

  • Ahn, Min Cheol;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권4호
    • /
    • pp.36-40
    • /
    • 2012
  • This paper presents an experimental and numerical study on current limiting characteristics of a fault current controller (FCC). The FCC consists of an AC/DC power converter, a superconducting coil, and a control unit. Even though some previous researches proved that the FCC could adjust the fault current level, the current limiting characteristics by the superconducting coil should be investigated for design of the coil. In this paper, four kinds of model coils were tested; 1) air core, 2) iron core without any bias, 3) reversely magnetized core (RMC) using permanent magnets, and 4) RMC using an electromagnet. Based on a comparative study, it is confirmed that a RMC by an electromagnet (EM) could increase the effective inductance of the coil. In this paper, a numerical code to simulate the HTS coil with RMC was developed. This code can be applied to design the HTS coil with active reversely magnetized bias coil.

시뮬레이션을 통한 정류형 초전도 전류발생장치의 동작특성해석 (The Analysis of operational characteristic of superconducting current generator by computer simulation)

  • 추용;주민석;홍중배;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.95-97
    • /
    • 1995
  • A superconducting current generator, or a superconducting rectifier(SCR) is used as a current source to energize a superconducting magnets in SMES, MRI. We selected a full-wave SCR among various SCR models and analyzed its operational characteristics by computer simulation. In process of pumping the current, the improvement of performance is dependent on how much bigger the open resistance of the switch is in comparison to load coil impedance when one of two switches become active. Faster transfer can he seen in resistive commutation mode by shortening the time elapsed for the resistance to arrive at certain level from zero state. Although recovery time for the switch has no direct effect on current pumping, optimal switch design is needed to increasing operational frequency.

  • PDF

R&D trends of high current REBCO conductor

  • Oh, Sang-Soo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2022
  • So far, large-scale scientific devices such as nuclear fusion tokamaks and high energy circular accelerators were constructed using high-current conductors made of metallic superconducting wires. Recently, as REBCO superconducting wires usable in high magnetic fields have been developed by several companies, researchesto apply high current cable type REBCO conductors to next-generation large superconducting magnets were also started. High critical currents of several kA or more in high magnetic fields have been successfully demonstrated on test samples of REBCO cable conductors by several research groups. In this review article, the main features and properties of the representative high current REBCO conductors such as CORC(Conductor On Round Core), TSTC(Twisted Stacked-Tape Cable) and RACC(Roebel-Assembled Coated Conductor), which are currently being developed at abroad are briefly introduced. Research activities of high-current density REBCO MHOS(Multi HTS layers on One Substrate) conductor at KERI, whose structure is different from other cable type REBCO conductors are also shortly introduced.

대형 초전도자석 테스트설비의 Data Acquisition&Control시스템 (Data Acquisition and Control System for a Large-scale Superconducting Test Facility)

  • Y. Chu;S. Baek;S. Baang;M. Kim;S. Lee;B. Lim;W. Chung;H. Park;K. Park
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.303-305
    • /
    • 2002
  • SSTF(Samsung Superconducting Test Facility) has been constructed at Samsung Advanced Institute of Technology to test the KSTAR(Korea Superconducting Tokamak Advanced Research) superconducting magnets and conductors. The SSTF DAC(Data Acquisition and Control) system basically consists of VME I/O modules, host PCs, and Ethernet links. VxWorks is used for the real-time OS of the VME IOC(Input/output Controller). EPICS (Experimental Physics and Industrial Control System) provides a software architecture for the communication between IOCs and host PCs. For the efficient management of measured data, the database management programs through NFS(Network File System) have been developed and successfully operated. In this paper, the current status of the SSTF DAC system, DBMS(DataBase Management System), recent test results, and future plans are presented.

  • PDF

High-temperature superconductors for NMR/MRI magnets:opportunities and challenges

  • Iwasa, Yukikazu;Bascunan, Juan;Hahn, Seungyong;Yao, Weijun
    • 한국초전도저온공학회지:초전도와저온공학
    • /
    • 제11권2호
    • /
    • pp.23-29
    • /
    • 2009
  • The unique features of HTS offer opportunities and challenges to a number of applications. In this paper we focus on NMR and MRI magnets, illustrating them with the NMR/MRI magnets that we are currently and will shortly be engaged: a 1.3 GHz NMR magnet, an "annulus" magnet, and an $MgB_2$whole-body MRI magnet. The opportunities with HTS include: 1) high fields (e.g., 1.3 GHz magnet); 2) compactness (annulus magnet); and 3) enhanced stability despite liquid-helium-free operation ($MgB_2$whole-body MRI magnet). The challenges include: 1) a large screening current field detrimental to spatial field homogeneity (e.g., 1.3 GHz magnet); 2) uniformity of critical current density (annulus magnet); and 3) superconducting joints ($MgB_2$magnet).

  • PDF

SMES용 kA급 초전도도체의 운전전류 특성 (Operating Current Characteristics of a kA Class Conductor for a SMES device)

  • 류경우;최병주;김해종;성기철
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2003
  • We have developed a small-sized superconducting magnetic energy storage (SMES) device, which provides electric power with high quality to sensitive electric loads. In large magnets such as the SMES magnets the stability, which is determined by several factors, e.g. conductors cooling condition and operating current, magnets winding structure, is a crucial problem. The effect of the cooling condition, the copper ratio, and the conductor's size upon the recovery currents was investigated experimentally. The results indicate that the recovery current characteristics of the strands vary considerably according to their insulation method. In the fully insulated strands with a low copper ratio, the recovery current densities range from 10 to 20 % of their engineering critical current densities. The recovery current density of the 30-conductor with a cooling channel is about a factor of 1.8 higher than that without a cooling channel.

  • PDF

Passive shimming design with commercially available rectangular shim sheets on a cylinder for HTS NMR magnets

  • Ahn, Min Cheol
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권2호
    • /
    • pp.29-33
    • /
    • 2018
  • Although high-temperature superconducting (HTS) magnets have the potential merit of producing ultra-high field (>25 T), they have been not easy to apply to Nuclear Magnetic Resonance (NMR) because of the difficulty of field homogeneity improvement. This paper presents a design technique of passive shimming for HTS magnets. Ferromagnetic shimming design code was developed though MALAB, which includes the optimization algorithm. The proper shim element size was determined by a simulation. This design technique was verified by a case study design of a 3-T HTS magnet. We succeed to improve field homogeneity of the magnet from 634 ppm to 6.39 ppm at 10-mm diameter sphere volume. Feasibility of passive shimming for all-HTS NMR magnet was confirmed by this result.