• Title/Summary/Keyword: superconducting gap

Search Result 106, Processing Time 0.024 seconds

Fabrication and Characteristics of 30〔kVA〕 Superconducting Generator (30(kVA) 초전도발전기 제작 및 특성)

  • ;;;;;;;I. Muta;I. Hoshino
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.32-38
    • /
    • 2001
  • A 30[kVA] superconducting generator (SCG) is built and tested at Korea Electrotechnology Research Institute (KERI) in Korea. This superconducting generator has an air-gap winding instead of the typical steel teeth structure. The rotor has 4 field coils of race-track type with NbTi superconducting wired. The rotor is composed of two dampers and a liquid helium composed of two dampers and a liquid helium container in which the field poles reside. The space between the outermost damper and the container is vacuum insulated. A ferrofluid seal is used between the stationary part connected to the couping and the rotor. A helium transfer coupling(HTC) has 3 passages of the recovered heilum gas and a gas flow control system. The open circuit test and sustained short circuit test are preformed to obtain the open circuit characteristics (OCC) and short circuit characteristics (SCC) Also. the test results usder the light load (up to 3.6[kW]) are given. The structure, manufacturing and basis test of the 30[kVA]SCG are discussed.

  • PDF

Feasible approach of contactless power transfer technology combined with HTS coils based on electromagnetic resonance coupling

  • Chung, Yoon Do;Yim, Seong Woo;Hwang, Si Dole
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The contactless power transfer (CPT) systems have been recently gaining popularity widely since it is an available option to realize the power delivery and storage with connector-free devices across a large air gap. Especially, the CPT with electromagnetic resonance coupling method is possible to exchange energy within 2 m efficiently. However, the power transfer efficiency of CPT in commercialized products has been limited because the impedance matching of coupled coils is sensitive. As a reasonable approach, we combined the CPT system with HTS wire technology and called as, superconducting contactless power transfer (SUCPT) system. Since the superconducting coils have an enough current density, the superconducting antenna and receiver coils at CPT system have a merit to deliver and receive a mass amount of electric energy. In this paper, we present the feasibility of the SUCPT system and examine the transmission properties of SUCPT phenomenon between room temperature and very low temperature at 77 K as long as the receiver is within 1.0 m distance.

A Study on the Analysis for Ac-losses of the Field Winding considering Load Changes of High-Tc Superconducting Synchronous Motor (고온초전도동기모터의 부하변동에 따른 계자권선의 교류손실 해석에 관한 연구)

  • Yun, Yong-Su;Song, Myeong-Gon;Jang, Won-Gap;Jang, In-Bae;Hong, Gye-Won;Lee, Sang-Jin;Go, Tae-Guk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.167-173
    • /
    • 1999
  • The use of high-Tc superconducting synchronous motor in power machinery has many advantages such as reduced power dissipation, size and weight. This paper presents the ac loss simulation in the rotor having an high-Tc superconducting field winding using Ag sheathed Bi-2223. The analysis was conducted with an equivalent model of the high-Tc superconducting motor with flux damper under transition condition during which the load varies from 0 watt to 250watts and from 250watts to 500watts. The simulation results show that the transient state lasts for about 3 seconds, and the ac losses decreased exponentially from the initial value above 20mW.

  • PDF

Conceptual Design of a 10 HP Homopolar Motor with Superconducting Windings

  • Park, Sang-Ho;Kim, Yun-Gil;Lee, Se-Yeon;Choi, Kyeong-Dal;Hahn, Song-Yop;Lee, Ji-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.9-12
    • /
    • 2011
  • Superconducting motor has a lot of benefits from high power density for ship propulsions, so a number of research project are in progress worldwide. Despite of all the benefits, there is always a difficulty of cryo-moving part for conventional air-core superconducting synchronous motors. In order to get rid of this moving cryogenic part, we propose a homopolar superconducting synchronous motor, which has high temperature superconducting armature and field coils. The rotor is supposed to be made of iron only and excited by the stationary HTS field coils. The stationary field coils make the cooling system simple and easy to realize because there is no cryo-moving part. A design result of a 10 hp homopolar synchronous motor is presented in this paper. The self and mutual inductance of the motor having the size of air gap as variable parameter are calculated by a 3-dimemsional finite element method. The value of design variables such as the dimension of a motor and the number of turns, etc. is decided by performing the coordinate transformation of the calculated inductance. The operating frequency is supposed to be below 5 Hz for low rotating speed which is needed for a purpose of ship propulsion. Low frequency also has the benefit of low AC losses.

Analytical and Experimental studies on Dielectric Characteristics of High Voltage Superconducting Machines in Liquid Nitrogen (액체질소를 사용하는 초전도 고전압 전력기기의 절연 특성 연구)

  • Na, J.B.;Ko, T.K.;Kang, H.;Seok, B.Y.;Kim, T.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.46-50
    • /
    • 2011
  • The electrical insulation design of high voltage superconducting fault current limiters (SFCLs) should be confirmed to be applied for the stabilization of the power grid. This paper describes numerical analysis and AC dielectric experiments for developing high voltage SFCLs. The electric field distributions between applied high voltage part and ground were calculated by finite element method (FEM) simulation tool and AC criterion of liquid nitrogen at 200 kPa was calculated from correlation between the field utilization factor and FEM simulation results. This paper deals with ceonceptual insulation design of a 154 kV class single-phase no-inductively wound solenoid type SFCL which was focused on gap distance between the cryostat and superconducting coils. Furthermore, the shield ring effect was confirmed to reduce maximum electric field at applied high voltage part.

Design and Performance Testing of a 30dVA Superconducting Generator (30kVA 초전도발전기의 설계 및 성능평가)

  • 손명환;백승규;권영길;장국렬;이언용;류강실;박도영;김용주;안종보
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.146-149
    • /
    • 1999
  • A 30kVA superconducting generator has been designed, developed and successfully tested recently. The design is based on 2-dimensional electromagnetic field analysis. The rotor has been wound with superconducting wire of Nb-Ti alloy. The stator has the air-gap type armature windings. Open-circuit test, short-circuit test and lamp load test have been conducted. The details of design program, design, machinebuilding, test results and conclusions are given in this paper.

  • PDF

Study on the Ceramics Magnetic Sensor Fabrication Technology (세라믹 자성 센서 제조기술에 관한 연구)

  • Lee, Sang-Heon;Lee, Sung-Gap
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.61-65
    • /
    • 2003
  • A magnetic field sensor is fabricated with superconducting ceramics system The prepared material shows the superconductivity at about 95K. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than $100{\mu}V$ by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF

3D Field Analysis And Circuit Parameter Calculation of Superconducting Homopolar Synchronous Motor (전초전도 호모폴라 모터의 3차원 자계해석 및 회로상수 추출)

  • Cho, Young-Han;Sung, Tan-Il;Kim, Young-Sun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.700_701
    • /
    • 2009
  • In comparison with conventional motors, Superconducting Homopolar Synchronous Motors (SHSMs) have advantages that it generates high magnetic field by superconducting winding. Therefore, superconducting coil used in SHSM can reduce the motor size and enhance the motor efficiency for high torque applications under the space constraints for propulsion system. During the design process of SHSM, it is required to evaluate the performance of initial design model, that is accurately analyzed using 3D magnetic field modeling large air-gap and flux distribution of axial direction is properly taken into account. In this paper, we analyze magnetic field of a homopolar motor with a 4-pole homopolar rotor and a stator of 3 phase windings. The field analysis is done using 3D finite element analysis which can reflect the end effect and overhang winding. And we extract mutual inductances between a rotor wind and the 3 stator windings. The extracted inductances are used for evaluation of overall motor performances that are calculated with generalized circuit theory of electrical machines.

  • PDF

$MgB_2$ Sheets using Mixture of Mg and B Powders by Powder Roll Compaction (Mg과 B 혼합분말을 이용하여 분말압연 공정으로 제조된 $MgB_2$ 초전도 판재연구)

  • Chung, K.C.;Chang, S.H.;Sinha, B.B.;Kim, J.H.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.184-188
    • /
    • 2012
  • $MgB_2$ superconducting sheets have been fabricated by powder rolling method using mixture of Mg and B powders. Sheet-type $MgB_2$ bulk samples of ~10 mm width and 50-100 mm long were squeezed out after compacted by two rotating rolls of 130 mm diameter with gap distance of 0.5 mm and speed of ~40 cm/min (~1 rpm). The nominal composition of Mg, which is ductile metal, was added up to 30% to facilitate forming the $MgB_2$ sheets. The annealed samples at $900^{\circ}C$ and 3 hrs showed superconducting transition temperature of ~32 K and critical current densities at zero fields were ${\sim}10^5A/cm^2$ at 5 K and ${\sim}5{\times}10^4A/cm^2$ at 20 K.

Study on the Dielectric Characteristics of Gaseous Nitrogen for Designing a High Voltage Superconducting Fault Current Limiter

  • Heo, Jeong-Il;Hong, Jong-Gi;Nam, Seok-Ho;Kang, Hyoung-Ku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.28-31
    • /
    • 2012
  • The study on the dielectric characteristics of gaseous insulation medium is important for designing current leads of superconducting machines using a sub-cooled liquid nitrogen ($LN_2$) cooling method. In a sub-cooled $LN_2$ cooling system, the temperature of gaseous insulation medium surrounding current leads varies from the temperature of coolant to 300 K according to the displacement between the electrode system and the surface of sub-cooled $LN_2$. In this paper, AC withstand voltage experiments on gaseous nitrogen according to temperature are conducted. Also, AC withstand voltage experiments on gaseous nitrogen according to pressure, size of electrode, and gap length between two electrodes are performed. It is found that there is a functional relation between the electrical breakdown voltage and the field utilization factor (${\xi}$). As a result, the empirical formula for estimating an electrical breakdown voltage is deduced by adopting the concept of field utilization factors. It is expected that the experimental results presented in this paper are helpful to design current leads for a high voltage superconducting apparatus such as a superconducting fault current limiter (SFCL) using a sub-cooled $LN_2$ cooling system.