• 제목/요약/키워드: superconducting device

검색결과 243건 처리시간 0.041초

Electromagnetic design study of a 7 T 320 mm high-temperature superconducting MRI magnet with multi-width technique incorporated

  • Jang, Won Seok;Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bang, Jeseok;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.30-34
    • /
    • 2021
  • Superconducting magnets have paved the way for opening new horizons in designing an electromagnet of a high field magnetic resonance imaging (MRI) device. In the first phase of the superconducting MRI magnet era, low-temperature superconductor (LTS) has played a key role in constructing the main magnet of an MRI device. The highest magnetic resonance (MR) field of 11.7 T was indeed reached using LTS, which is generated by the well-known Iseult project. However, as the limit of current carrying capacity and mechanical robustness under a high field environment is revealed, it is widely believed that commercial LTS wires would be challenging to manufacture a high field (>10 T) MRI magnet. As a result, high-temperature superconductor together with the conducting cooling approach has been spotlighted as a promising alternative to the conventional LTS. In 2020, the Korean government launched a national project to develop an HTS magnet for a high field MRI magnet as an extent of this interest. We have performed a design study of a 7 T 320 mm winding bore HTS MRI magnet, which may be the ultimate goal of this project. Thus, in this paper, design study results are provided. Electromagnetic design and analysis were performed considering the requirements of central magnetic field and spatial field uniformity.

Current Limiting and Interrupting Operation of Hybrid Self-Excited Type Superconducting DCCB

  • Choi, S.J.;Lim, S.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권4호
    • /
    • pp.55-59
    • /
    • 2018
  • Currently, the development of industry makes needs larger electric supply. Providers must consider the efficiency about losses and reliability of the system. In this case, DC power system can save electrical energy; long-distance transmission line losses. Relevance to switch technology with a voltage-source converter (VSC) in AC-DC conversion system have been researched. But, protection device of DC-link against fault current is still needed to study much. VSC DC power system is vulnerable to DC-cable short-circuit and ground faults, because DC-link has a huge size of capacitor filter which releases extremely large current during DC faults. Furthermore, DC has a fatal flaw that current zero crossing is nonexistence. To interrupt the DC, several methods which make a zero crossing is used; parallel connecting self-excited series LC circuit with main switch, LC circuit with power electronic device called hybrid DC circuit breaker. Meanwhile, self-excited oscillator needs a huge size capacitor that produces big oscillation current which makes zero crossing. This capacitor has a quite effective on the price of DCCB. In this paper, hybrid self-excited type superconducting DCCB which are using AC circuit breaker system is studied by simulation tool PSCAD/EMTDC.

R2R Hall Sensor 측정 장치를 이용한 비접촉식 성능평가 (The quality evaluation of SmBCO CC by non-contact R2R Hall sensor array system)

  • 오재근;오상수;하동우;하홍수;고락길;김호섭;송규정;이남진;문승현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권3호
    • /
    • pp.1-4
    • /
    • 2008
  • For the effective evaluation of superconducting properties of a coated conductor, with a long length, a non destructive characterization technique including a reel-to-reel (R2R) Hall measuring system have been developed. A non-contact R2R Hall sensor array system was particularly designed to measure the superconducting property of coated conductors. The superconducting properties of long length coated conductors were measured by using this device. It was demonstrated that this system was convenient to measure the intensity and distribution of the magnet field applied perpendicular to the surfaces of the coated conductors. Using this device, the defect and low critical current density(Jc) area of coated conductors could be detected in real-time measurement.

0.7MJ SMES의 개념설계 (Conceptual design of 0.7MJ superconducting magnetic energy storage)

  • 오봉환;진홍범;류강식;류경우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.202-204
    • /
    • 1996
  • A superconducting magnetic energy storage device(SSD) system has being developed to provide power to industrial electric loads subjected to short term voltage disturbances. In this paper, the results of the conceptual design of SSD system are described.

  • PDF

세라믹 초전도 전자 소자 (Ceramics Superconducting Electronic Device for Infrared detector)

  • 이상헌
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.532-534
    • /
    • 2009
  • The ceramics superconductor may have a high degree of homogeneity and a more open structure through which atoms can easily diffuse without having to overcome the high activation barrier. Infrared detectors of ceramic superconductor materials have been studied. Ceramic superconductor have smaller reflection coefficient than metal superconductor and therefore infrared light can more easily penetrate into bulks. YBCO thick films show sensitivity of 250 V/W. The accumulation of particles decrease the superconducting energy gap.

계통안정도 개선을 위한 SMES 제어모델에 관한 연구 (Superconducting Magnetic Energy Storage (SMES) Control Models for the Improvement of Power System Stability)

  • 함완균;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.501-503
    • /
    • 2005
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device.

  • PDF

과냉질소 냉각시스템 가압용 기체의 절연내력특성 분석 (Analysis on the Dielectric Characteristics of Various Insulation Gases for Developing a Sub-cooled Liquid Nitrogen Cooling System)

  • 강형구;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권1호
    • /
    • pp.27-30
    • /
    • 2011
  • A sub-cooled liquid nitrogen cooling system is known as a most promising method to develop large scale superconducting apparatuses such as superconducting fault current limiters and superconducting cables [1]. Gaseous helium (GHe), gaseous nitrogen ($GN_2$) and sulfur hexafluoride ($SF_6$) are commonly used for designing an high voltage applied superconducting device as an injection gaseous medium [2, 3]. In this paper, the analysis on the dielectric characteristics of GHe, $GN_2$ and $SF_6$ are conducted by designing and manufacturing sphere-to-plane electrode systems. The AC withstand voltage experiments on the various gaseous insulation media are carried out and the results are analyzed by using finite element method (FEM) considering field utilization factors (${\xi}$). It is found that the electric field intensity at sparkover ($E_{MAX}$) of insulation media exponentially decreases according to ${\xi}$ increases. Also, the empirical expressions of the functional relations between $E_{MAX}$ and ${\xi}$ of insulation media are deduced by dielectric experiments and computational analyses. It is expected that the electrical insulation design of applied superconducting devices could be performed by using the deduced empirical formulae without dielectric experiments.

DC 리액터형 고온초전도한류기의 전력계통 연계를 위한 자기철심리액터의 설계 (Design of the Magnetic Core Reactor for the connection to the Power System of DC Reactor Type High Temperature Superconducting Fault Current Limiter)

  • 임대준;배덕권;김호민;이찬주;윤경용;윤용수;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.322-325
    • /
    • 2002
  • In this paper, the power-linking device connecting the high-Tc super-conducting(HTS) coil to the power system in the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been designed. This design was triggered from the concept that the magnetic energy could be exchanged into the electrical energy each other. Ferromagnetic material is used as the path of magnetic flux. The device mentioned above was named Magnetic Core Reactor(MCR). MCR was designed to minimize the voltage drop caused by copper loss. The current density of the conductor was 1.3 A/mm$^2$ and % voltage drop was 2%.

  • PDF

A Hybrid Energy Storage System Using a Superconducting Magnet and a Secondary Battery

  • ISE Toshifumi;YOSHIDA Takeshi;KUMAGAI Sadatoshi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.534-538
    • /
    • 2001
  • Energy storage devices with high energy density as well as high power density are expected to be developed from the point of view of compensation of fluctuating load and generated power by distributed generations such as wind turbines, photovoltaic cells and so on. SMES (Superconducting Magnetic Energy Storage) has higher power density than other energy storage methods, and secondary batteries have higher energy density than SMES. The hybrid energy storage device using SMES and secondary batteries is proposed as the energy storage method with higher power and energy density, the sharing method of power reference value for each storage device, simulation and experimental results are presented.

  • PDF

전력계통에 초전도한류기 적용시 차단용량 확보를 위한 초전도한류기 적용방안 연구 (Analysis on the Application Capacity of the Superconducting Fault Current Limiter considering Reclosing and Fault Current)

  • 김진석;임성훈;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.592-593
    • /
    • 2015
  • Recently, the fault current has increased to exceed the rated breaking capacity of protective device due to the growth of the power demand on the power system where is changed into the loop-, mesh-, network grid. To limit fault current, the superconducting fault current limiter (SFCL) is announced with various methods. In many researches, the current limiting effect with the SFCL has been analyzed considering the rated breaking capacity of the CB with one fault condition. However, the power system has various short circuit and operation conditions. In order to select the capacity of the SFCL with reclosing operation and burden of the fault current on the protective device, the characteristics of the power system were investigated. Through the analysis, the evaluation method of the current rate was improved.

  • PDF