• Title/Summary/Keyword: super-resolution microscopy

Search Result 9, Processing Time 0.023 seconds

Recent Developments in Correlative Super-Resolution Fluorescence Microscopy and Electron Microscopy

  • Jeong, Dokyung;Kim, Doory
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.

Solid-immersion lens based confocal microscopy using super-continuum generation effect (Super-continuum generation 현상을 이용한 Solid-immersion lens 기반 공초점 현미경)

  • Lee, Won-Sup;Moon, Hyungbae;Lim, Geon;Choi, Guk-Jong;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.2
    • /
    • pp.22-25
    • /
    • 2015
  • In this paper, we demonstrate solid-immersion lens based confocal microscopy using super-continuum generation effect. Using super-continuum generation effect, we could diversify the excitation wavelength of confocal microscopy. Further, high refractive index of solid-immersion lens would increase the resolution of confocal microscopy. As a result, by applying the super-continuum generation effect and solid-immersion lens to confocal microscopy, some problems of confocal fluorescent microscopy, the excitation wavelength and the resolution, could be overcome. To verify it, we made home-built solid-immersion lens based confocal microscopy using super-continuum generation effect, and evaluate the performance of the system.

Simultaneous Estimation of Spatial Frequency and Phase Based on an Improved Component Cross-Correlation Algorithm for Structured Illumination Microscopy

  • Zhang, Yinxin;Deng, Jiajun;Liu, Guoxuan;Fei, Jianyang;Yang, Huaidong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.317-325
    • /
    • 2020
  • Accurate estimation of spatial frequencies and phases for illumination patterns are essential to reconstructing super-resolution images in structured illumination microscopy (SIM). In this manuscript, we propose the improved component cross-correlation (ICC) algorithm, which is based on optimization of the cross-correlation values of the overlapping information between various spectral components. Compared to other algorithms for spatial-frequency and phase determination, the results calculated by the ICC algorithm are more accurate when the modulation depths of the illumination patterns are low. Moreover, the ICC algorithm is able to calculate the spatial frequencies and phases simultaneously. Simulation results indicate that even if the modulation depth is lower than 0.1, the ICC algorithm still estimates the parameters precisely; the images reconstructed by the ICC algorithm are much clearer than those reconstructed by other algorithms. In experiments, our home-built SIM system was used to image bovine pulmonary artery endothelial (BPAE) cells. Drawing support from the ICC algorithm, super-resolution images were reconstructed without artifacts.

Super-Resolution Optical Fluctuation Imaging Using Speckle Illumination

  • Kim, Min-Kwan;Park, Chung-Hyun;Park, YongKeun;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.403.1-403.1
    • /
    • 2014
  • In conventional far-field microscopy, two objects separated closer than approximately half of an emission wavelength cannot be resolved, because of the fundamental limitation known as Abbe's diffraction limit. During the last decade, several super-resolution methods have been developed to overcome the diffraction limit in optical imaging. Among them, super-resolution optical fluctuation imaging (SOFI) developed by Dertinger et al [1], employs the statistical analysis of temporal fluorescence fluctuations induced by blinking phenomena in fluorophores. SOFI is a simple and versatile method for super-resolution imaging. However, due to the uncontrollable blinking of fluorophores, there are some limitations to using SOFI for several applications, including the limitations of available blinking fluorophores for SOFI, a requirement of using a high-speed camera, and a low signal-to-noise ratio. To solve these limitations, we present a new approach combining SOFI with speckle pattern illumination to create illumination-induced optical fluctuation instead of blinking fluctuation of fluorophore.. This technique effectively overcome the limitations of the conventional SOFI since illumination-induced optical fluctuation is possible to control unlike blinking phenomena of fluorophore. And we present the sub-diffraction resolution image using SOFI with speckle illumination.

  • PDF

Brain Mapping: From Anatomics to Informatics

  • Sun, Woong
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.184-187
    • /
    • 2016
  • Neuronal connectivity determines brain function. Therefore, understanding the full map of brain connectivity with functional annotations is one of the most desirable but challenging tasks in science. Current methods to achieve this goal are limited by the resolution of imaging tools and the field of view. Macroscale imaging tools (e.g., magnetic resonance imaging, diffusion tensor images, and positron emission tomography) are suitable for large-volume analysis, and the resolution of these methodologies is being improved by developing hardware and software systems. Microscale tools (e.g., serial electron microscopy and array tomography), on the other hand, are evolving to efficiently stack small volumes to expand the dimension of analysis. The advent of mesoscale tools (e.g., tissue clearing and single plane ilumination microscopy super-resolution imaging) has greatly contributed to filling in the gaps between macroscale and microscale data. To achieve anatomical maps with gene expression and neural connection tags as multimodal information hubs, much work on information analysis and processing is yet required. Once images are obtained, digitized, and cumulated, these large amounts of information should be analyzed with information processing tools. With this in mind, post-imaging processing with the aid of many advanced information processing tools (e.g., artificial intelligence-based image processing) is set to explode in the near future, and with that, anatomic problems will be transformed into informatics problems.

Water - Assisted Efficient Growth of Multi-walled Carbon Nanotubes by Thermal Chemical Vapor Deposition

  • Choi, In-Sung;Jeon, Hong-Jun;Kim, Young-Rae;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.418-418
    • /
    • 2009
  • Vertically aligned arrays of multi-walled carbon nanotube (MWCNT) on layered Si substrates have been synthesized by water-assisted thermal chemical vapor deposition (CVD). We studied changes in growth by parameters of growth temperature, growth time, rates of gas and annealing time of catalyst. Also, We grew CNTs by adding a little amount of water vapor to enhance the growth of CNTs. $H_2$, Ar, and $C_2H_2$ were used as carrier gas and feedstock, respectively. Before growth, Fe served as catalyst, underneath which AI were coated as an underlayer and a diffusion barrier, respectively, on the Si substrate. The water vapor had a greater effect on the growth of CNTs on a smaller thickness of catalyst. When the water vapor was introduced, the growth of CNTs was enhanced than without water. CNTs grew 1.29 mm for 10 min long by adding the water vapor, while CNTs were 0.73 mm long without water vapor for the same period of time. CNTs grew up to 1.97 mm for 30 min prior to growth termination under adding water vapor. As-grown CNTs were characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy.

  • PDF

Single Molecule Method for Molecular Biology

  • Kim, Jeong Hee;Jeong, Cherlhyun
    • International Journal of Oral Biology
    • /
    • v.43 no.2
    • /
    • pp.53-59
    • /
    • 2018
  • In order to understand biological phenomena accurately, single molecule techniques using a physical research approach to molecular interactions have been developed, and are now widely being used to study complex biological processes. In this review, we discuss some of the single molecule methods which are composed of two major parts: single molecule spectroscopy and manipulation. In particular, we explain how these techniques work and introduce the current research which uses them. Finally, we present the oral biology research using the single molecule methods.

Crystal structure of $Ba(Mg_{1/3}Nb_{2/3})O_3$ - $La(Mg_{2/3}Nb_{1/3})O_3$ Complex perovskite compound ($Ba(Mg_{1/3}Nb_{2/3})O_3$ - $La(Mg_{2/3}Nb_{1/3})O_3$ 복합 페로브스카이트 화합물의 결정구조)

  • Paik, Jong-Hoo;Lee, Mi-Jae;Choi, Byung-Hyun;Lee, Jong-Won;Jee, Mi-Jung;Lim, Eun-Kyeong;Nahm, Sahn;Lee, Hwack-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.283-287
    • /
    • 2003
  • Crystal structure of $(Ba_{1-x}La_x)[Mg_{(1+x)/3}Nb_{(2-x)/3}]O_3$ (BLMN) ceramics with $0{\leq}x{\leq}1$ was investigated using synchrotron X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). When La content, x, is above 0.1, the 1:2 ordered hexagonal structure found in $Ba(Mg_{1/3}Nb_{2/3})O_3$ (BMN) was transformed into 1:1 ordered cubic structure. The 1:1 ordered cubic structure was maintained up to x=0.7. However, when x exceeded 0.7, BLMN was transformed 1:1 ordered structure which has cation displacement and in-phase and anti-phase tilt of octahedra.

  • PDF