• 제목/요약/키워드: super-heterodyne technique

검색결과 2건 처리시간 0.016초

헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정 (High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers.)

  • 김승우;김민석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.203-206
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state-of-the-art reaches the region of sub-nanometers. We propose a new scheme of phase-measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with electrically generated reference signal. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special from of frequency up-down counting technique is combined with the super-heterodyning. This alloys performing required phase unwrapping simply by using programmable digital gates without 2$\pi$ ambiguities up to the maximum velocity of 2.35 m/s.

  • PDF

헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정 (High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers)

  • 김민석;김승우
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.172-178
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state -of-the-art reaches the region of sub-nanometers. So far, the demand has been met by increasing the clock speed that drives the electronics involved fur the phase measurement of the Doppler shift, but its further advance is being hampered by the technological limit of modem electronics. To cope with the problem, in this investigation, we propose a new scheme of phase -measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with a stable reference signal generated from a special phase- locked-loop. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special form of frequency up-down counting technique is combined with the super-heterodyning. This allows performing required phase unwrapping simply by using programmable digital gates without 2n ambiguities up to the maximum velocity guaranteed by the original beat frequency.