• Title/Summary/Keyword: super stability

Search Result 153, Processing Time 0.03 seconds

On the equivalence of reaction rate in energy collapsing of fast reactor code SARAX

  • Xiao, Bowen;Wei, Linfang;Zheng, Youqi;Zhang, Bin;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.732-740
    • /
    • 2021
  • Scattering resonance of medium mass nuclides leads complex spectrum in the fast reactor, which requires thousands of energy groups in the spectrum calculation. When the broad-group cross sections are collapsed, reaction rate cannot be completely conserved. To eliminate the error from energy collapsing, the Super-homogenization method in energy collapsing (ESPH) was employed in the fast reactor code SARAX. An ESPH factor was derived based on the ESPH-corrected SN transport equation. By applying the factor in problems with reflective boundary condition, both the effective multiplication factor and reaction rate were conserved. The fixed-source iteration was used to ensure the stability of ESPH iteration. However, in the energy collapsing process of SARAX, the vacuum boundary condition was adopted, which was necessary for fast reactors with strong heterogeneity. To further reduce the error caused by leakage, an additional conservation factor was proposed to correct the neutron current in energy collapsing. To evaluate the performance of ESPH with conservation factor, numerical benchmarks of fast reactors were calculated. The results of broad-group calculation agreed well with the direct full-core Monte-Carlo calculation, including the effective multiplication factor, radial power distribution, total control rod worth and sodium void worth.

In doped ZTO 기반 산화물 반도체 TFT 소자의 CuCa 전극 적용에 따른 특성 변화 및 신뢰성 향상

  • Kim, Sin;O, Dong-Ju;Jeong, Jae-Gyeong;Lee, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.167.2-167.2
    • /
    • 2015
  • 고 이동도(~10 cm/Vs), 낮은 공정온도 및 높은 투과율 등의 특성을 갖는 산화물 반도체는 저 소비전력, 대면적화 및 고해상도 LCD Panel에 적합한 재료로서 현재 일부 Mobile Panel 및 TFT-LCD Panel의 양산에 적용되고 있으나, 향후 UHD급(4 K, 8 K)의 대형, 고해상도 Panel에의 적용을 위해서는 30 cm2/Vs 이상의 고 이동도 재료의 개발 및 저 저항 배선의 적용에 따른 소자 신뢰성의 개선이 필요하다. Cu는 대표적인 저 저항 배선 재료로 일부 양산에 적용되고 있으나, Cu 전극과 산화물 반도체의 계면에서 Cu원자의 확산 및 Cu-O 층의 형성에 의한 소자 특성 저하의 문제가 있다. 본 연구에서는 고 이동도의 In doped-ZTO계 산화물 반도체를 기반으로 채널 층과 Cu source-Drain layer의 계면에서의 Cu element의 거동 및 TFT 소자 특성과의 상관관계를 고찰하고, 계면에 형성된 Cu-O layer에 대해 높은 전자 친화도를 갖는 Ca element를 첨가에 의한 TFT 소자 특성의 변화를 관찰하였다. 본 연구에서는 이러한 효과로 인한 소자 신뢰성의 향상을 기대하였으며, 우선 In doped-ZTO 채널 층에 Cu와 CuCa 2at% source-drain을 적용한 TFT 특성을 확인하였다. 그 결과, Cu는 Field-effect mobility: ~17.67 cm2/Vs, Sub-threshold swing: 0.76 mV/decade 및 Vth:, 4.40 V의 결과가 얻어졌으며 CuCa 2at%의 경우 Field-effect mobility: ~17.84 cm2/Vs, Sub-threshold swing: 0.86 mV/decade 및 Vth:, 5.74 V의 결과가 얻어졌다. 소자신뢰성 측면에서도 Bias Stress의 변화량 ${\delta}Vth$의 경우 Cu : 4.48 V에 대해 CuCa 2at% : 2.81 V로 ${\delta}Vth$:1.67 V의 개선된 결과를 얻었다.

  • PDF

An Analysis of Factors Affecting the Variation of GDP Gap by a Decomposition Method (GDP갭 분해기법을 이용한 변동요인 분석)

  • Chang, Youngjae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.387-396
    • /
    • 2014
  • The GDP gap (also called the output gap) is the difference between potential GDP and actual GDP. Potential GDP is the maximum sustainable output that is achieved when the resources (labor and capital) are used to capacity. Central banks pursuing price and employment stability consider the output gap as an informative variable for monetary policy since the output gap could be regarded as a proxy of demand-supply imbalances. In this paper, the GDP gap of Korea is decomposed following the filtering method in the previous research, and major factors that affect the variation of GDP gap are investigated based on the decomposed series. The analysis results by the Super Smoother algorithm used in Fox et al. (2003)and Fox and Zurlinden (2006) are found consistent with theory. Much of the variation of nominal GDP gap is explained by Total Factor Productivity(TFP) gap, which is the change of productivity due to recent technological innovation and environmental change. It is also found that variation of terms of trade significantly affects the GDP gap of Korea due to its high dependency on international trade; however, the effect of the domestic price is not negligible like other countries.

Policy Trends and Utilization of Information Communications Technologies for the Senior Support in Japan (일본의 고령자 지원을 위한 정보통신기술 정책 동향 및 활용)

  • Lee, Jin Ah
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1420-1427
    • /
    • 2019
  • Super aged society, Japan actively uses Information Communication Technology(ICT) as one of solving methods for various social problem. Especially, for Korea where soon will become super aged society, it would be meaningful to examine the current policy trends and utilization of senior support using ICT in Japan. This study explores the policy trends and utilization of senior support using ICT in Japan through literature review, and then proposes some suggestions as follows. Opportunities for practical use of ICT should be widened in the field of senior support, and efforts are needed to build an information linkage network between institutions for senior support because linkage between care sector and medical sector is important for the elderly support. Besides, simplification of paperwork and easing of burden of care providers or workers in the field should be sought by development and dissemination of various robots. Moreover, the spread of technology for emotional support and stability should be actively pursued by using ICT.

Optimal Design of Urban MICROGRID using Economical Analysis Program (경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계)

  • Seung-Duck, Yu;SungWoo, Yim;Youseok, Lim;SungWook, Hwang;JuHak, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.

Surface roughness and color stability of various composite resins (수종의 복합 레진의 표면 거칠기와 색 안정성)

  • Lee, Sung-Yi;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.6
    • /
    • pp.542-549
    • /
    • 2007
  • The purpose of this study was to evaluate the difference in the surface roughness after polishing and to evaluate the difference in color stability after immersion in a dye solution among four types of composite resin materials. Four light-polymerized composite resins(Shade A2) with different sized filler content(a nanofilled, a hybrid, a microfilled, a flowble) were used. Average surface roughness (Ra) was measured with a surface roughness tester (Surftest Formtracer) before and after polishing with aluminum oxide abrasive discs(Super-Snap). Color of specimens before and after staining with 2% methylene blue solution were measured using spectrophotometer(CM-3700d) with SCI geometries. The results of Ra and ${\Delta}E$ were analyzed by one-way analysis of variance(ANOVA), a Scheffe multiple comparison test and Student t-test(p=0.05). After polishing, Ra values were decreased regardless of type of composite resins. In surface roughness after polishing and color stability after staining, nanofilled composite resin was not different with other composite resins except flowable resins.

Stability Analysis of FCHEV Energy System Using Frequency Decoupling Control Method

  • Dai, Peng;Sun, Weinan;Xie, Houqing;Lv, Yan;Han, Zhonghui
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.490-500
    • /
    • 2017
  • Fuel cell (FC) is a promising power supply in electric vehicles (EV); however, it has poor dynamic performance and short service life. To address these shortcomings, a super capacitor (SC) is adopted as an auxiliary power supply. In this study, the frequency decoupling control method is used in electric vehicle energy system. High-frequency and low-frequency demand power is provided by SC and FC, respectively, which makes full use of two power supplies. Simultaneously, the energy system still has rapidity and reliability. The distributed power system (DPS) of EV requires DC-DC converters to achieve the desired voltage. The stability of cascaded converters must be assessed. Impedance-based methods are effective in the stability analysis of DPS. In this study, closed-loop impedances of interleaved half-bridge DC-DC converter and phase-shifted full-bridge DC-DC converter based on the frequency decoupling control method are derived. The closed-loop impedance of an inverter for permanent magnet synchronous motor based on space vector modulation control method is also derived. An improved Middlebrook criterion is used to assess and adjust the stability of the energy system. A theoretical analysis and simulation test are provided to demonstrate the feasibility of the energy management system and the control method.

Trend on Development of Low Molecular Weight Organosilicone Surfactants (Part 1) (저분자 유기실리콘 계면활성제의 개발 동향 (제1보))

  • Rang, Moon Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.66-82
    • /
    • 2017
  • Organosilicone-based surfactants consist of hydrophobic organosilicone groups coupled to hydrophilic polar groups. Organosilicone surfactants have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability, resulted from the unique properties of organosilicone. Especially, trisiloxane surfactants, having low molecular weight organosilicone as hydrophobe, exhibit low surface tension and excellent wettability and spreadability, leading to their applications as super wetter/super spreader, but have the disadvantage of vulnerability to hydrolysis. A variety of trisiloxane surfactant structures are required to provide the functional improvement and the defect resolution for reflecting the necessities in the various applications. This review covers the synthetic schemes of reactive trisiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive trisiloxanes to hydrophilic groups, and the synthetic schemes of the main trisiloxane surfactants including polyether-, carbohydrate-, gemini-, bolaform-, double trisiloxane-type surfactants.

Trend on Development of Low Molecular Weight Organosilicone Surfactants (Part II) (저분자 유기실리콘 계면활성제의 개발 동향 (제2보))

  • Rang, Moon Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.461-477
    • /
    • 2017
  • Organosilicone-based surfactants, consisting of hydrophobic organosilicone groups coupled to hydrophilic polar groups, have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability, resulted from the unique properties of organosilicone. Especially, organosiloxane surfactants, having low molecular weight siloxane as hydrophobe, exhibit low surface tension and excellent wettability and spreadability, leading to their applications as super wetter/super spreader, but have the disadvantage of vulnerability to hydrolysis. A variety of low molecular weight siloxane surfactant structures are required to provide the functional improvement and the defect resolution for reflecting the necessities in the various applications. This review includes the synthetic schemes of reactive tetrasiloxanes and disiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive tetrasiloxanes or disiloxanes to hydrophilic groups, and the main synthetic schemes of the tetra- and di-siloxane surfactants having polyether-, carbohydrate-, gemini-, bola-type surfactant structures.

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.