• Title/Summary/Keyword: super injection grouting

Search Result 5, Processing Time 0.026 seconds

Evaluation of Composite Ground Improvement at Structural Foundation Ground by Super Injection Grouing (SIG공법에 의한 구조물기초지반에서의 복합지반개량 평가)

  • 김종국;손형호;이호관;성기광
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.347-354
    • /
    • 2002
  • In this paper, when structures are constructed in the soft ground with poor bearing capacity at Incheon International Airport(railroad area), as for the grouting columns built In soft ground by high pressure jet grouting with Triple tube rod(super injection grouting), the effects on reinforcement and bearing capacity of ground are investigated. A unconfined compressive strength tests has been performed on the specimens sampled from the grouting columns and a mass plate bearing test has been performed on a grouting column. The test results show that super injection grouting has a sufficient effect on composite ground improved of foundation ground and reatraint of settlement of structure.

  • PDF

A Case Study on the Improvement of Rail Road Subgrade using Super Injection Grouting Method - Strength Increase in Marine Clay - (철도노반개량을 위한 고압분사 사례연구 - 해성점토지반에서의 강도증대효과를 중심으로-)

  • 천병식;최현석
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.103-110
    • /
    • 1998
  • Several soil improvement methods are applied to stabilize soft ground. But their improvement effects are known to be reduced in view of strength under poor conditions such as marine clay. The purpose of this paper is to investigate the strength increase effects of super injection grouting on the marine clay, A series of laboratory tests and chemical analysis tests has been peformed. Through this study, the causes of strength inferiority of treated soil was analyzed and soil improvement effects of grouted soil was presented.

  • PDF

The Behavior of Bearing Capacity of Steel Pipe Piles Reinforced by Super Injection Grouting at Pile Tip (S.I.G 공법으로 선단보강된 강관말뚝의 지지거동)

  • Park, Young-Ho;Kim, Nag-Young;Yook, Jeong-Hoon;Choi, Jin-O
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.20-27
    • /
    • 2004
  • Reinforced twice than width of foundation with SIC under steel piles drived in cohesion soil and in the coal-limestone which heavily fractured. To analyze behaviour characteristic of steel piles, load transfer test was performed to steel piles attached with strain gauges to axial direction. After it passed 49days, dynamic load test was performed to set-up effect of steel piles bearing capacity. The results of test were compared to each other. According to the results, as the skin friction of steel pile was on the same condition, end bearing capacity of steel piles established on SIC solid of cemented milk in cohesion soil was three times than steel piles established on SIG solid of cemented milk in heavily fractured coal- limestone. After piles were driven and passes 49days, in case of piles on SIG solid of comented milk in cohesion soil the increaes of allowable bearing capacity was 442.9% and allowable bearing capacity of piles on SIG solid of cemented milk in heavily fractured coal-limestone increased 22.4%.

  • PDF

The Characteristic of Strength for a Lime Stone in Donghae Area and Harden Cement Milk of Super Injection Grouting (동해 석회암과 SIG 고결체의 강도특성)

  • Park, Young-Ho;Kim, Nak-Young;Hong, Sa-Myun;Yook, Jeong-Hoon;Kim, Ki-Seog
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.137-145
    • /
    • 2004
  • Limestone zone in korea have been distributed to diagonal line so that it is wide from the Gangwondo to the Jeonlanamdo. The limestone cavity and fractured zone were formed by chemical weathering. Limestone cavity and fractured zone was reinforced with cemented milk(w/c=60%)by high pressure jet grouting by tripple -pipe to establish bridge foundation on the ground condition like limestone cavity. To analyze property of limestone and solid of cement milk(w/c=65%), mixed solid of cement, core NX size in the limestone cavity and fractured zone and compressive strength. Seismic tomograpy exploration was pcrforn1cd to analyze deformation modulus of limestone. The analysis suggests that deformation modulus of limestone has effect on uniaxial compressive strength, seismic velocity, seismic elasticity modulus. Average static elasticity modulus of limestone is $5.08{\times}10^5kgf/cm^2$, cement and coal mixed solid is $0.25{\times}10^5kgf/cm^2$, $0.095{\times}10^5kgf/cm^2$. Average seismic velocity of limestone is 5.240m/sec, cement and coal mixed solid is 2,211.3m/sec, 1,447.5m/sec. Average uniaxial compressive strength of limestone was $1,221.3kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $125.22kgf/cm^2$, $35kgf/cm^2$ each other. Average friction angle of limestone was $49.14^{\circ}$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $38.39^{\circ}, 25.83^{\circ}$ each other. Average cohesion of limestone was $137.7kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $23.5kgf/cm^2$, $15.5kgf/cm^2$ each other. Average deformation modulus of limestone was $2.84{\times}10^5kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $0.4{\times}10^5kgf/cm^2, 0.12{\times}10^5kgf/cm^2$ each other. It was analyzed that the elasticity and uniaxial compressive strength, seismic velocity of solid of cement milk mixed limestone pieces and coal had an highly interrelation regardless of existence of limestones pieces and coal but it had shown that limestones had an lower interrelation. In case of field seismic velocity and deformation of limestone, SIC solid of cement milk mixed with coal and limestone pieces had an highly interrelation.

  • PDF

Analysis of Injection Efficiency for Cement Grouts by Model Test of Permeation in Soil (지반침투모형시험에 의한 시멘트그라우트의 주입성능 분석)

  • Song, Young-Su;Lim, Heui-Dae;Choi, Dong-Nam
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • When cement grout is used for waterproofing of grounds, important roles are played by fluidity, particle size and bleeding. The most important element which determines their characteristics is the water/cement ratio of grout. Moreover in order to improve the efficiency of soil permeation, micro cement with a smaller average diameter is used in addition to ordinary portland cement. Besides the mixing ratio and cement diameter, the condition of ground is also of fundamental importance in the efficiency of permeation. In order to evaluate grout in terms of permeation ability into ground, we need a field test of grounting, which is cost and time consuming. In this paper we present a laboratory test method in which the suitability and efficiency of grouts are simply and more practically tested. In Korea neither a test standard nor devices are available to simulate grouting in a laboratory. We devised a grout injection equipment in which grouting was reproduced in the same condition with different materials, and suggested a standard for the production of specimens. Our tests revealed that the efficiency of injection increases with the water/cement ratio. We also found that more efficiently injected is the grout with the order of decreasing size; MS8000, micro cement, and ultra fine cements, and colloidal super cement.