• Title/Summary/Keyword: summer grain crop

Search Result 31, Processing Time 0.031 seconds

Potato-maize double cropping using paddy field in southern plain of Korea

  • Seo, Jong Ho;Hwang, Chung Dong;Yi, Hwi Jong;Choi, Weon Young;Bae, Hyun Kyung;Kim, Sang Yeol;Oh, Meong Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.345-345
    • /
    • 2017
  • In order to reduce rice cultivation area in paddy fields and to increase domestic self-sufficiency of imported upland grain, it is necessary to increase double cropping area of upland crops in paddy field in accordance with decrease of rice consumption in Korea. The double cropping of spring potato-summer grain maize can be combined because of enough growing season in the southern plain of Korea. Spring potato, which is profitable, can be planted in the late February and harvested in the late May as the main crop. Subsequent grain maize can be planted in early June and harvested in November (maturity in the early October). Spring potato (variety Soomi) yielded $2,544kg\;10a^{-1}$ (tuber) when planted in late February, 2016. When maize was planted in June as the second cropping crop, though growth of plant decreased much, grain yield decreased slightly compared to normal planting in April or May. There was enough time to dry maize ear in the field after maturity before harvesting, which saved labor and time for grain drying, since there is no autumn planting at the double cropping of spring potato-summer grain maize. When grain maize (variety Gwangpyeongok) was planted in the early June (June $10^{th}$), average grain yield of above $860kg\;10a^{-1}$ over 2 years of 2015 and 2016 was obtained, and the annual total yield (potato tuber + maize grain) of 3,400 kg $10a^{-1}$ was obtained. The result indicates that the double cropping of spring potato-summer maize using paddy fields in southern plain of Korea, could contribute to the self-sufficiency of upland crops through the maximum production.

  • PDF

Compatibility of Double Cropping of Winter Wheat - Summer Grain Crops in Paddy Field of Southern Korea (남부지역 논의 밀 이모작에서 하계 곡실작물 도입의 적합성)

  • Seo, Jong-Ho;Hwang, Chung-Dong;Oh, Seong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.18-28
    • /
    • 2021
  • The growth period and productivity of cropping system of winter wheat-rice, winter wheat-bean and winter wheat-grain corn for 4 years from 2015 to 2018 were compared at the experimental field of National Institute of Crop Science in Miryang city. The harvest period of winter wheat was in mid-June, and summer crops were sown (transplanted) in late June. In transplanting of rice in late June, there was no difficulty in securing the heading of panicle and the yield of rice, but there was a lot of trouble in sowing wheat in proper time because the harvest time of rice was delayed to early November due to late maturity of rice, particularly in the mid-late maturing cultivar. There was no problem in soybean planting after winter wheat because the proper period of soybean planting is late-June. In addition, there was no problem in winter wheat sowng after soybean because the maturity period of soybean was mid-October. Selection of grain maize in double cropping with winter wheat in terms of growing periods, was desirable because grain maize had the fastest maturity among summer crops. In double cropping of winter wheat-summer crops, wheats combined with soybean and grain maize showed stable yields during three years, but there was a risk of yield declines in the wheat combined with rice in heavy rainfall year. It was possible to secure high yields in three summer crops as yields of rice, soybean, and corn were 600, 350, and 800 kg/10a, respectively. Summer crops with medium maturity was recommended because of no significant difference in yield between medium maturity and medium-late maturity cultivar. Soil physical properties were improved in soils cultivated with soybean and grain maize. Therefore, It was thought that double cropping systems of winter wheat with soybean and grain maize were superior to that of winter wheat with rice in terms of connecting period between winter wheat - summer crops and improvement of soil physical properties, and total income, particularly in soybean.

Nutrition, Utilization and Productivity of Pearl Millet Hybrids Developed in Korea (진주조의 영양과 이용 및 생산성)

  • Keun-Yong Park;Rae-Kyung Park;Byeong-Han Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.103-114
    • /
    • 1994
  • Pearl millet is a $C_4$ plant and summer crop originated from west Africa, and the sixth most important cereal in the world and the most widely cultivated millet in the semi-arid tropics as a major staple food crop. Its grain of higher quality protein is used to make unleavened bread chapatis and prepared as gruel, dumplings, couscous and beer. It is also used as animal feed and forage in both temperate and tropical regions because it has a capability to grow well not only in the fertile soil, but also in the poor and dry soil. Most of the current breeding procedures used in pearl millet are aimed at maximum exploitation of hybrid vigor for both grain and forage yields in Korea. Pearl millet is ideally suited for exploitation of heterosis using cytoplasmic male sterile lines as seed parent, and fertile inbred lines and open-pollinated cultivars as pollen parent. Pearl millet hybrids developed in Korea produced 3 to 7 tons of grain and 100 to 150 tons of green fodder per hectare.

  • PDF

Quality Breeding Outcome and Outlook in Coarse Grain Crops (잡곡의 품질개량 육종 성과와 전망)

  • Choi Byung Han
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.09a
    • /
    • pp.22-34
    • /
    • 1998
  • Coarse grain crops including maize, sorghum, buckwheat, fox-tail millet, pearl millet, proso millet and barnyard millet have been used as health food, feed and industrial materials in Korea for a long time. Korean ancestors thought and treated them as the very important good crops for human health and the crops have served as a dish made with all the grains, particularly in January 15 of the lunar month in korea because the grains make the five viscera of heart, liver, spleen, lungs and kidneys and the six entrails of gall bladder, stomach, small and large intestines, the paunch, the bladder, and the bowels strong and build healthy body. Thus, the objectives of the paper were to review and summarize the results obtained from the quality breeding and functional researches worldwide on nutrition, utilization and medical action of the coarse grain crops. Maize grain, fresh ear and green fodder yields have increased since 1960s in Korea. Agronomic traits improvements also occurred for cold tolerance, disease and insect resistance, resistance to barrenness, resistance to loding, pollen production, grain and seed yields, and eating quality. For buckwheat, improved summer buckwheat varieties produced more rutin for vegetable and grain than autumn varieties in Korea

  • PDF

Nitrogen Use and Yield of Silage Corn as Affected by Hairy Vetch(Vicia villosa Roth) Soil-incorporated at Different Time in Spring

  • Seo, Jong-Ho;Lee, Ho-Jin;Hur, Il-Bong;Kim, Si-Ju;Kim, Chung-Guk;Jo, Hyeon-Suk;Lee, Jung-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.272-275
    • /
    • 2000
  • Winter green manure crops including legume increase grain yield of subsequent crop and substitute N fertilizer requirement with organic-No Hairy vetch grows vigorously and can provide N-rich green manure for corn with its soil incorporation after wintering. But, grain yield of corn as succeeding crop would be reduced if its planting time is delayed until late spring. This experiment was carried out to find the proper incorporation time of hairy vetch green manure and planting time of subsequent corn in cropping system with winter hairy vetch(green manure)-summer corn. Hairy vetch was incorporated into soil at a ten-day interval between April 10 and May 10 and corn was planted at 5 days after each hairy vetch incorporation. Soil nitrate concentration on April 10 and 20 in hairy vetch plot was slightly lower than that at winter fallow. Above-ground dry matter and organic-N of hairy vetch increased linearly with delayed hairy vetch incorporation time from April 10 to May 10. Average dry matter and organic-N produced by hairy vetch were 5.7 ton/ha and 248 kgN/ha, respectively. Corn growth and yield decreased as delayed corn planting time after May in spite of increasing dry matter and N-yield of hairy vetch. Nitrogen concentration of corn grain, stalk and whole plant at harvest were the highest in May 5 planting, but total N-uptake of May 5 planting were not different from that of April 25 planting because of lower grain yield. It was concluded that the proper incorporation time of hairy vetch and corn planting time were April 20 and April 25, respectively, because grain yield was the highest and corn could use hairy vetch-N effectively to produce dry matter.

  • PDF

Comparison of Weed Populations in Conventional Till and No-till Experimental Agroecosystems (경운 및 무경운 실험 농업생태계에서의 잡초개체군의 비교)

  • Park, Tae Yoon;Eugene P. Odum
    • The Korean Journal of Ecology
    • /
    • v.18 no.4
    • /
    • pp.471-481
    • /
    • 1995
  • The weed population dynamics as affected by contrasting conventional tillege (CT) and no-tillage (NT) practices with a minimum herbicide application was studied in Athens, Georgia, U.S.A. Common chickweed (Stellaria media) was the most common spring weed while johnsongrass (Sorghum halepense), sicklepod (Cassia obtusifolia), and pigweed (Amaranthus retroflexus) accounted for 89∼97% of net production during summers of 1983 and 1984. Total weed production in summer of 1984 was 2∼5 times greater than that of 1983. Weed production was greater in NT plots than in CT plots in summer of 1983, but reverse was the case in summer of 1984. In spring, net production in NT plots was greater than that in CT plots, especially, in 1985. Species diversity was consistently higher in NT plots, but in the wet summer of 1984 the pattern was different, with higher diversity in CT plots. Weed species diversity was higher in the spring rye crop than in the summer grain sorghum crop. The larger but less diverse weed populations in summer of 1984 indicated that these populations experienced competitive exclusion. Under the favorable summer moisture conditions the three dominant species grew so vigorously and quickly as to exclude many less common species that were able to survive under the drier conditions in 1983. The three dominant species not only excluded other weeds in 1984 but also greatly reduced crop production. The perennial johnsongrass was equally successful, or even more so, in CT plots as in NT plots. Plowing did not kill johnsongrass rhizomes but tended to break them up, thus increasing the number of individual plants that appear after the plowing. It means that johnsongrass was not controlled by the plowing. In summer of 1983, a moderate amount of weedy growth was maintained with a minimum amount of gerbicide application in NT and CT plots. It is possible that a small mixed weed population would be beneficial by providing cover for predatory and parasitic arthropods, and by reducing soil temperature and moisture losses.

  • PDF

Rice cultivars adaptable for rice based cropping systems in a paddy field in the Yeongnam plain area of Korea

  • Kim, Sang-Yeol;Seo, Jong-Ho;Bae, Hyun-Kyung;Hwang, Chung-Dong;Ko, Jong-Min
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.355-363
    • /
    • 2018
  • This study was conducted to investigate suitable rice cultivars for various rice based cropping systems in a paddy field in the Yeongnam plain area. Thirteen rice cultivars (5 early, 3 medium and 5 mid-late maturing cultivars) and three transplanting dates (June 5, June 25 and July 5) were evaluated in this study. The mid-late and early maturing cultivars for the July 5 and June 25 transplanting headed before August 30 which is the safe heading date in the Yeongnam plain area, ranging from Aug. 26 - 28 and Aug. 18 - 23, respectively. The safe harvest time of rice for double and triple cropping systems should be before the middle of October for the cultivation of the succeeding winter crops. The rice yield was the highest for the June 5 transplanting regardless of the rice cultivars, and it gradually decreased as the transplanting date was delayed from June 5 to July 5 due to a decrease in the spikelet numbers per panicle number and in the ripened grain rate. In contrast, the other yield parameters that include the panicle number per $m^2$, the 1,000-brown rice weight, and the ripened grain ratio were not significantly affected. The result indicates that based on the milled rice, heading time and harvest time, a medium maturing cultivar (Haiami and Samdeog) would be applicable to a winter barley/wheat, garlic/onion-summer rice double cropping, while a mid-late cultivar (Saeilmi, Saenuri and Hyunpoom) would be suitable for a spring potato/waxy corn-summer rice double cropping in the Yeongnam plain area. On the other hand, an early maturing cultivar (Unkwang, Jokwang and Haedamssal) would be preferable for a triple cropping because of the short growth period of rice.

An Overview of Teff (Eragrostis teff Zuccagni) Trotter) as a Potential Summer Forage Crop in Temperate Systems

  • Habte, Ermias;Muktar, Meki S.;Negawo, Alemayehu T.;Lee, Sang-Hoon;Lee, Ki-Won;Jones, Chris S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.185-188
    • /
    • 2019
  • The production of traditional cool season grasses in temperate regions is becoming hampered during summer seasons due to water deficit. Thus, incorporating water use efficient warm season annual grasses are generally considered to fill the gap of summer season forage reduction that would offer considerable flexibility and adaptability to respond to forage demand. Teff (Eragrostis teff Zuccagni) Trotter) is, a C4 drought tolerant warm season annual grass primarily grown for grain production, recently gaining interest for forage production particularly during summer season. Previous reports have showed that teff is palatable and has comparable forage biomass and feed quality as compared to other warm season annual grasses which would make it an alternative forage. However, the available data are not comprehensive to explore the potential of teff as forage, hence further assessment of genotype variability and performance along with compatibility study of teff with forage production system of specific environment is key for future utilization.

Effect of Soil Water Stress on Yield and Quality of Korean Wheat

  • Han-yong Jeong;Yulim Kim;Chuloh Cho;Jinhee Park;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.62-62
    • /
    • 2022
  • Among annual precipitation in Korea (1306.3 mm), 54% of it falls intensively in summer, and only about 12.4% falls in April and May, when the water requirement of wheat is the highest. Korean wheat also could be damaged by soil water excess stress as frozen soil thaws after winter (late Feb-Mar). This study was conducted to evaluate effect of soil water stress on yield and quality of Korean wheat cultivar 'Saegeumgang'. Soil water treatments consisted of 4 treatments; water excess treatment in tilling stage (3.23-3.30), drought treatment in ripening stage (Apr-Jun), irrigation treatment in ripening stage (5.10) and standard condition. There was no significant difference between the treatment conditions for culm length, and the number of spike number was the highest in the order of irrigation in the ripening period (951)> standard cultivation (876)> excess water treatment in the tilling stage (752)> drought treatment in the ripening stage (767/m2). Test weight and Thousand grain weight were 548g/L and 22. lg respectively, which were lower than other treatments, and there was no significant difference between the other treatments. Abortive grain was 5.4kg/10a which was lower than other treatment, and there was no significant difference between the other treatment than other treatments. In drought treatment, protein content was 11.9% which is the highest among all treatments, and SDS-sedimentation value was 27.2ml under drought treatment which was very low compared to other treatments. Therefore, wheat yield and spike number were decreased in excess water condition at tilling stage and drought condition at ripening stage. Furthermore, wheat quality became deteriorate in drought condition at ripening stage.

  • PDF

Studies on Heterostylism, Fertility, and Embryological Characteristics in Buckwheat. Fagopyrum esculentum (메밀의 이형예현상과 수정력 발생학적 특징에 관한 연구)

  • Man-Sang Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.129-142
    • /
    • 1986
  • Fifty-five local collections of buck wheat, Fagopyrum esculentum, were investigated their ratios of long-styled (LS) and short-styled (SS) flowers, fertility, meiosis of megaspore and microspore mother cell, female and male gametogenesis, and egg apparatus in accordance with the sowing seasons (spring, summer), altitudes (20m, 50-100m, 300m), and parent style types (L, S). Also they were embryologically investigated the fertility, fertilizing phenomenon and proembryogenesis by the legitimate and illegitimate pollination. There were no differences in the ratios of long-styled and short-5tyled flowers along with altitudes, but more irregularness was observed in plain area than that in the mountaineous or coastal area. LS versus SS ratios by sowing seasons were significantly separated into 1 : 1 in the summer sowing (P 0.1), but they were irregularly separated in the spring sowing. The segregating ratios by parent style types showed more number of short-styled flower in the spring sowing, and were statistically seperated into 1 : 1 in the summer sowing (P 0.25), regardless to parent style types. In the artificial legitimate union, the seed setting rates of the summer sowing (59-61%) were much higher than those of the spring sowing (about 30%), but in the artificial illegitimate union the seed setting rates were only fructified about 0.8-1.8% in the spring sowing. The seed setting rates in accordance with flowering stages were larger in turn early, middle, late, in the summer sowing. The grain number and grain weight per plant of short-styled flower were more than those of long-styled one regardless to style types. The 1,000 grain weight of long-styled flower was heavier than that of short-styled one in large grain, but it was lighter than that of short-styled flower in small or medium grain. The percentage of normal female and male gametogenesis in the summer sowing were higher than those in the spring sowing. The ovule was atropous and two polar nuclei were a synkarion before flowering. The pollens germinated at 30 minuts after pollination and the pollen tube grew continually and penetrated into micropyle at 1.5-2 hours and the two male nuclei fertilized with egg nucleus at 3 -5 hours after pollination. Flertilizing times in summer were shorter than in autumn. The fertilized egg was divided in a small apical cell toward the interior of the embryo sac and a large basal cell toward the micropyle cell at 15-24 hours after pollination, and division times in summer were shorter than in autumn. The proembryo began the embryogenesis at 7-8 days and formed itself into the perfect embryo at 15 days after pollination.

  • PDF