• Title/Summary/Keyword: summer drought

Search Result 108, Processing Time 0.027 seconds

Spatial and Temporal Variations in the Water Use Efficiency and its Drought Signal on the Korean Peninsula using MODIS-derived Products (MODIS 영상을 활용한 한반도의 시공간적 물 이용효율 변동 및 가뭄과의 연관성 분석)

  • Kim, Jeongbin;Ho, Hyunjoo;Um, Myoung-Jin;Kim, Yeonjoo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.553-564
    • /
    • 2018
  • Water use efficiency (WUE) is the amount of carbon uptake per unit of water use, which is a key measure of the functions of terrestrial ecosystems, as it is related to both the hydrologic and carbon cycles. Furthermore, it can vary with many factors, such as climate conditions and land cover characteristics, in different regions. In this study, we aim to understand the spatial and temporal variations in WUE on the Korean Peninsula as well as the associated response to drought. The Moderate Resolution Imaging Spectroradiometer (MODIS)-derived gross primary productivity (GPP) and evapotranspiration (ET) datasets and climate data were used to derive a drought index. Based on the monthly WUE, we found that WUE decreased during the monsoon summer in all regions and for all vegetation types. Furthermore, the annual WUE was negatively correlated with the drought index, with increasing correlation coefficients from the northern region to the southern region of the Korean Peninsula.

An Overview of Teff (Eragrostis teff Zuccagni) Trotter) as a Potential Summer Forage Crop in Temperate Systems

  • Habte, Ermias;Muktar, Meki S.;Negawo, Alemayehu T.;Lee, Sang-Hoon;Lee, Ki-Won;Jones, Chris S.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.185-188
    • /
    • 2019
  • The production of traditional cool season grasses in temperate regions is becoming hampered during summer seasons due to water deficit. Thus, incorporating water use efficient warm season annual grasses are generally considered to fill the gap of summer season forage reduction that would offer considerable flexibility and adaptability to respond to forage demand. Teff (Eragrostis teff Zuccagni) Trotter) is, a C4 drought tolerant warm season annual grass primarily grown for grain production, recently gaining interest for forage production particularly during summer season. Previous reports have showed that teff is palatable and has comparable forage biomass and feed quality as compared to other warm season annual grasses which would make it an alternative forage. However, the available data are not comprehensive to explore the potential of teff as forage, hence further assessment of genotype variability and performance along with compatibility study of teff with forage production system of specific environment is key for future utilization.

Quantitative analysis of drought propagation probabilities combining Bayesian networks and copula function (베이지안 네트워크와 코플라 함수의 결합을 통한 가뭄전이 발생확률의 정량적 분석)

  • Shin, Ji Yae;Ryu, Jae Hee;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.523-534
    • /
    • 2021
  • Meteorological drought originates from a precipitation deficiency and propagates to agricultural and hydrological droughts through the hydrological cycle. Comparing with the meteorological drought, agricultural and hydrological droughts have more direct impacts on human society. Thus, understanding how meteorological drought evolves to agricultural and hydrological droughts is necessary for efficient drought preparedness and response. In this study, meteorological and hydrological droughts were defined based on the observed precipitation and the synthesized streamflow by the land surface model. The Bayesian network model was applied for probabilistic analysis of the propagation relationship between meteorological and hydrological droughts. The copula function was used to estimate the joint probability in the Bayesian network. The results indicated that the propagation probabilities from the moderate and extreme meteorological droughts were ranged from 0.41 to 0.63 and from 0.83 to 0.98, respectively. In addition, the propagation probabilities were highest in autumn (0.71 ~ 0.89) and lowest in winter (0.41 ~ 0.62). The propagation probability increases as the meteorological drought evolved from summer to autumn, and the severe hydrological drought could be prevented by appropriate mitigation during that time.

Meteorological Constraints and Countermeasures in Major Summer Crop Production (하작물의 기상재해와 그 대책)

  • Shin-Han Kwon;Hong-Suk Lee;Eun-Hui Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.398-410
    • /
    • 1982
  • Summer crops grown in uplands are greatly diversified and show a large variation in difference with year and location in Korea. The principal factor for the variation is weather, in which precipitation and temperature play a leading role and such a weather factors as wind, sun lights also influence production of the summer crops. Since artificial control of weather conditions as a main stress factor for crop production is almost impossible, it must be minimized only by an improvement of cultivation techniques and crop improvement. Precipitation plays a role as one of the most important factor for production of the summer crops and it is considered in two aspects, drought and excess moisture. This country, which belongs to monsoon territory, necessarily encounter one of this stress almost every year, even though the level is different. Therefore, the facilities for both drought and excess moisture are required, but actually it is not easy to complete for them. On this account, crops tolerant to drought, excess moisture and pests should be considered for establishing summer crops. For the districts damaged habitually every season, adequate crops should be cultured and appropriate method of planting, drainage and weed control should be applied diversely. Injuries by temperature is mainly attributed to lower temperature particularly in late fall and early spring, although higher temperature often causes some damages depending upon the kind of crops. Sometimes, lower temperature in summer season playa critical role for yield reduction in the summer crops. However, certain crops are prevented to some extent from this kind of stress by improving varieties tolerant to cold, hot weather or early maturing varieties. As is often the case, control of planting time or harvesting is able to be a good management for escaping the stress. Lodging, plant diseases and pests are considered as a direct or indirect damage due to weather stress, but these are characters able to be overcome by means of crop improvement and also controlled by other suitable methods. In addition, polytical supports capable of improving constitution of agriculture into modern industry is urgently required by programming of data for the damages, establishment of damage forecasting and compensation system.

  • PDF

Potassium Rate and Mowing Height for Kentucky Bluegrass Growth

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.268-273
    • /
    • 2016
  • Potassium is well-known to improve turfgrass tolerance to environmental stresses such as low temperature and drought stress. Low mowing height reduces leaf area of turfgrass that is main place for photosynthesis and carbohydrate production. Closely-mowed turf would suffer from summer decline by low level of carbohydrate resulted from low photosynthesis of reduced leaf area. The objective of the study is to investigate K rate and mowing height for Kentucky bluegrass. The K rate treatments were 5, 10, and $20g\;K_2O\;m^{-2}$ for the low, medium and high K rates, respectively. The bi-weekly mowing treatment was made for treatments. Mowing was implemented at 40 and 100 mm using a rotary mower. Regardless K rates, the high mowing height would be required when the air temperature is higher than $28.5^{\circ}C$ and high turfgrass quality of Kentucky bluegrass is needed. When the air temperature is optimal for cool-season grass, the high mowing height and the low K rate is needed for the root length of Kentucky bluegrass.

A Studay on the Rainfall and Drought Days in Kyupgpook Area (경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析))

  • Suh, Seung Duk;Jeon, Kuk Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

Yield Comparison Simulation between Seasonal Climatic Scenarios for Italian Ryegrass (Lolium Multiflorum Lam.) in Southern Coastal Regions of Korea (우리나라 남부해안지역에서 이탈리안 라이그라스에 대한 계절적 기후시나리오 간 수량비교 시뮬레이션)

  • Kim, Moonju;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • This study was carried out to compare the DMY (dry matter yield) of IRG (Italian ryegrass) in the southern coastal regions of Korea due to seasonal climate scenarios such as the Kaul-Changma (late monsoon) in autumn, extreme winter cold, and drought in the next spring. The IRG data (n = 203) were collected from various Reports for Collaborative Research Program to Develop New Cultivars of Summer Crops in Jeju, 203 Namwon, and Yeungam from the Rural Development Administration - (en DASH). In order to define the seasonal climate scenarios, climate variables including temperature, humidity, wind, sunshine were used by collected from the Korean Meteorological Administration. The discriminant analysis based on 5% significance level was performed to distinguish normal and abnormal climate scenarios. Furthermore, the DMY comparison was simulated based on the information of sample distribution of IRG. As a result, in the southern coastal regions, only the impact of next spring drought on DMY of IRG was critical. Although the severe winter cold was clearly classified from the normal, there was no difference in DMY. Thus, the DMY comparison was simulated only for the next spring drought. Under the yield comparison simulation, DMY (kg/ha) in the normal and drought was 14,743.83 and 12,707.97 respectively. It implies that the expected damage caused by the spring drought was about 2,000 kg/ha. Furthermore, the predicted DMY of spring drought was wider and slower than that of normal, indicating on high variability. This study is meaningful in confirming the predictive DMY damage and its possibility by spring drought for IRG via statistical simulation considering seasonal climate scenarios.

Physiological and Molecular Responses of Maize to High Temperature Stress During Summer in the Southern Region of Korea

  • Lee, Joon-Woo;Min, Chang-Woo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.170-174
    • /
    • 2018
  • Environmental stresses caused by climate change, such as high temperature, drought and salinity severely impact plant growth and productivity. Among these factors, high temperature stress will become more severe during summer. In this study, we examined physiological and molecular responses of maize plants to high temperature stress during summer. Highest level of $H_2O_2$ was observed in maize leaves collected July 26 compared with June 25 and July 12. Results indicated that high temperature stress triggers production of reactive oxygen species (ROS) in maize leaves. In addition, photosynthetic efficiency (Fv/Fm) sharply decreased in leaves with increasing air temperatures during the day in the field. RT-PCR analysis of maize plants exposed to high temperatures of during the day in field revealed increased accumulation of mitochondrial and chloroplastic small heat shock protein (HSP) transcripts. Results demonstrate that Fv/Fm values and organelle-localized small HSP gene could be used as physiological and molecular indicators of plants impacted by environmental stresses.

Past and Present Meteorological Stress in Crop Production and Its Significance (농작물의 기상재해와 대책)

  • Eun-Woong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.291-295
    • /
    • 1982
  • The biosphere of the earth is not only about to overpass the limit to meet the food demand of the world but also the stability of its food production has been also jeopardized by the disasters and pests, especially by the unpredictable weather disasters. In addition the agricultural and industrial pollution against biosphere aggravates the unstability of agricultural production and constitutes a threat in securing the food of the world. In Korea the yield level of crops has been greatly enhanced by the improved agrotechnologies and varietal improvement, but the yield variability due to unfavorable weather events and pests remained unchanged with the change in time. Among weather-related disasters the drought and flood damages has occurred most frequently and impacted most greatly on the agricultural production and its stability. During last decade (1970-l980) the rice production experienced the average annual loss of 0.544 million metric ton which was composed of 0.21 million M/T by climatic disaster, 0.21 million M/T by disease and 0.12 million M/T by insects, and the annual loss of upland crop production from climatic disasters amounted to 0.06 million metric tons. Especially in 1980, the global climatic disasters due to cold or hot temperature endangered the agricultural production all over the world and also the rice production of Korea recorded the unprecedented yield reduction of about 30 percent due to cool summer weather. Nowadays, the unusual weather conditions are prevaling throughout the world, and agro-meteologists predict that the unpredictable cool summer and drought will often attack the rice and other crops in 1980's. To meet the coming weather unstability and to secure the stable crop production, multilateral efforts should be rendered. Therefore, the Korea Society of Crop Science, which commemorates the 20th anniversary of its founding, prepared the symposium on Meteological Stress in Crop Production and its Countermeasures to discuss the decrease in agricultural production due to weather-related disasters and to devise the multilateral counter-measures against the unfavorable weather events.

  • PDF

Effects of open-field summer warming and drought on the abnormal shoot growth of Pinus densiflora seedlings (실외 여름철 온난화 및 가뭄 처리가 소나무 묘목의 이상생장 반응에 미치는 영향)

  • Heejae Jo;Jieun Park;Jinseo Kim;Gwang-Jung Kim;Gaeun Kim;Hyung-Sub Kim;Yowhan Son
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.473-481
    • /
    • 2023
  • Pinus densiflora is a fixed-growth coniferous species that elongates its shoot once a year and finishes growing in early summer. However, it may produce additional shoots in the same year in response to external stimuli, called abnormal shoot growth. This study investigated the effects of open-field summer warming and drought on the abnormal shoot growth of P. densiflora seedlings. In March 2022, two factorial combinations were constructed, including two temperature treatments (control and 4℃ increase) and two precipitation treatments (control and drought), with five replicates for each combination. The temperature treatment was performed for 87 days from May 14 to August 8, 2022, and the precipitation treatment was performed for 33 days from May 14 to June 15, blocking 100% of the ambient rainfall. The abnormal shoot occurrence rate and leaf unfolding stages were measured in November, and the shoot and root collar diameter growth rates were calculated by comparing the seedling height and root collar diameter measured in August(after the cessation of treatment) and October(after the end of growing period) with the initial values (i.e., May 2022). The abnormal shoot occurrence rate significantly increased under the warming treatment, showing a 410.6% increase in the warming plots (38.4%) compared to the control plots (7.5%). There was no significant difference in the shoot and root collar diameter growth rate regarding warming and drought treatments. Abnormal shoots may have been affected by high temperatures by inducing early transition to the next ontogenetic stage.