• Title/Summary/Keyword: summarization

Search Result 378, Processing Time 0.02 seconds

Semantic Pre-training Methodology for Improving Text Summarization Quality (텍스트 요약 품질 향상을 위한 의미적 사전학습 방법론)

  • Mingyu Jeon;Namgyu Kim
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Recently, automatic text summarization, which automatically summarizes only meaningful information for users, is being studied steadily. Especially, research on text summarization using Transformer, an artificial neural network model, has been mainly conducted. Among various studies, the GSG method, which trains a model through sentence-by-sentence masking, has received the most attention. However, the traditional GSG has limitations in selecting a sentence to be masked based on the degree of overlap of tokens, not the meaning of a sentence. Therefore, in this study, in order to improve the quality of text summarization, we propose SbGSG (Semantic-based GSG) methodology that selects sentences to be masked by GSG considering the meaning of sentences. As a result of conducting an experiment using 370,000 news articles and 21,600 summaries and reports, it was confirmed that the proposed methodology, SbGSG, showed superior performance compared to the traditional GSG in terms of ROUGE and BERT Score.

Performance Improvement of Topic Modeling using BART based Document Summarization (BART 기반 문서 요약을 통한 토픽 모델링 성능 향상)

  • Eun Su Kim;Hyun Yoo;Kyungyong Chung
    • Journal of Internet Computing and Services
    • /
    • v.25 no.3
    • /
    • pp.27-33
    • /
    • 2024
  • The environment of academic research is continuously changing due to the increase of information, which raises the need for an effective way to analyze and organize large amounts of documents. In this paper, we propose Performance Improvement of Topic Modeling using BART(Bidirectional and Auto-Regressive Transformers) based Document Summarization. The proposed method uses BART-based document summary model to extract the core content and improve topic modeling performance using LDA(Latent Dirichlet Allocation) algorithm. We suggest an approach to improve the performance and efficiency of LDA topic modeling through document summarization and validate it through experiments. The experimental results show that the BART-based model for summarizing article data captures the important information of the original articles with F1-Scores of 0.5819, 0.4384, and 0.5038 in Rouge-1, Rouge-2, and Rouge-L performance evaluations, respectively. In addition, topic modeling using summarized documents performs about 8.08% better than topic modeling using full text in the performance comparison using the Perplexity metric. This contributes to the reduction of data throughput and improvement of efficiency in the topic modeling process.

Subject-Balanced Intelligent Text Summarization Scheme (주제 균형 지능형 텍스트 요약 기법)

  • Yun, Yeoil;Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.141-166
    • /
    • 2019
  • Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.

Design and Implementation of Web-based Text Summarization System for Mobile Device (이동 단말을 위한 웹 기반 텍스트 요약 시스템의 설계 및 구현)

  • Cha, Ji-Eun;Chun, Seung-Man;Park, Jong-Tae
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.725-730
    • /
    • 2009
  • Recently, there has been increasing interest to web access through mobile host due to the explosion of internet mobile terminal such as smart phone. However, small displays of mobile hosts make it difficult to browse the full content of a web page at a time. In order to overcome these limitation, we have designed and implemented Web-based text summarization system. The proposed system can summarize the text for the Web page in which abundant text exist in a page. This can reduce the amount of data transmission and minimize the unnecessary data output during browsing at mobile host. Through implementation, we have confirmed the functions of the proposed system.

Query-Based Summarization using Semantic Feature Matrix and Semantic Variable Matrix (의미 특징 행렬과 의미 가변행렬을 이용한 질의 기반의 문서 요약)

  • Park, Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.372-377
    • /
    • 2008
  • This paper proposes a new query-based document summarization method using the semantic feature matrix and the semantic variable matrix. The proposed method doesn't need the training phase using training data comprising queries and query specific documents. And it exactly summarizes documents for the given query by using semantic features and semantic variables that is better at identifying sub-topics of document. Because the NMF have a great power to naturally extract semantic features representing the inherent structure of a document. The experimental results show that the proposed method achieves better performance than other methods.

  • PDF

Dynamic Expansion of Semantic Dictionary for Topic Extraction in Automatic Summarization (자동요약의 주제어 추출을 위한 의미사전의 동적 확장)

  • Choo, Kyo-Nam;Woo, Yo-Seob
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.241-247
    • /
    • 2009
  • This paper suggests the expansion methods of semantic dictionary, taking Korean semantic features account. These methods will be used to extract a practical topic word in the automatic summarization. The first is the method which is constructed the synonym dictionary for improving the performance of semantic-marker analysis. The second is the method which is extracted the probabilistic information from the subcategorization dictionary for resolving the syntactic and semantic ambiguity. The third is the method which is predicted the subcategorization patterns of the unregistered predicate, for the resolution of an affix-derived predicate.

  • PDF

End-to-end Korean Document Summarization using Copy Mechanism and Input-feeding (복사 방법론과 입력 추가 구조를 이용한 End-to-End 한국어 문서요약)

  • Choi, Kyoung-Ho;Lee, Changki
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.503-509
    • /
    • 2017
  • In this paper, the copy mechanism and input feeding are applied to recurrent neural network(RNN)-search model in a Korean-document summarization in an end-to-end manner. In addition, the performances of the document summarizations are compared according to the model and the tokenization format; accordingly, the syllable-unit, morpheme-unit, and hybrid-unit tokenization formats are compared. For the experiments, Internet newspaper articles were collected to construct a Korean-document summary data set (train set: 30291 documents; development set: 3786 documents; test set: 3705 documents). When the format was tokenized as the morpheme-unit, the models with the input feeding and the copy mechanism showed the highest performances of ROUGE-1 35.92, ROUGE-2 15.37, and ROUGE-L 29.45.

Path Selection and Summarization of User's Moving Path for Spatio-Temporal Location Prediction (시공간 위치 예측을 위한 사용자 이동 경로의 선택과 요약 방법)

  • Yoon, Tae-Bok;Lee, Dong-Hoon;Jung, Je-Hee;Lee, Jee-Hyong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.298-303
    • /
    • 2008
  • User adaptive services have been important features in many applications. To provide such services, various techniques with various kinds of data are being used. In this paper, we propose a method to analyze user's past moving paths for predicting the goal position and the path to the goal by observing the user's current moving path. We develop a spatio-temporal similarity measure between paths. We choose a past path which is the most similar to the current path using the similarity. Based on the chosen path, user's spatio-temporal position is estimated. Through experiments we confirm this method is useful and effective.

  • PDF

Query-based Document Summarization using Pseudo Relevance Feedback based on Semantic Features and WordNet (의미특징과 워드넷 기반의 의사 연관 피드백을 사용한 질의기반 문서요약)

  • Kim, Chul-Won;Park, Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1517-1524
    • /
    • 2011
  • In this paper, a new document summarization method, which uses the semantic features and the pseudo relevance feedback (PRF) by using WordNet, is introduced to extract meaningful sentences relevant to a user query. The proposed method can improve the quality of document summaries because the inherent semantic of the documents are well reflected by the semantic feature from NMF. In addition, it uses the PRF by the semantic features and WordNet to reduce the semantic gap between the high level user's requirement and the low level vector representation. The experimental results demonstrate that the proposed method achieves better performance that the other methods.

Text Summarization using PCA and SVD (주성분 분석과 비정칙치 분해를 이용한 문서 요약)

  • Lee, Chang-Beom;Kim, Min-Soo;Baek, Jang-Sun;Park, Hyuk-Ro
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.725-734
    • /
    • 2003
  • In this paper, we propose the text summarization method using PCA (Principal Component Analysis) and SVD (Singular Value Decomposition). The proposed method presents a summary by extracting significant sentences based on the distances between thematic words and sentences. To extract thematic words, we use both word frequency and co-occurence information that result from performing PCA. To extract significant sentences, we exploit Euclidean distances between thematic word vectors and sentence vectors that result from carrying out SVD. Experimental results using newspaper articles show that the proposed method is superior to the method using either word frequency or only PCA.