• Title/Summary/Keyword: summarization

Search Result 378, Processing Time 0.025 seconds

Efficient Summarization Using Zero Anaphora Resolution (한국어 영 대용어 처리를 통한 문서요약의 성능 향상)

  • 구상옥;전명희;김미진;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.555-557
    • /
    • 2003
  • 본 논문에서는 보다 간결한 요약문을 생성하기 위하여. 문장 전체를 추출하는 것이 아니라 문장의 일부분을 요약으로 추출한다. 그런데 한국어의 경우 문장 구조상 반복되는 문장성분을 생략하는 영 대용 문제가 빈번하게 발생하기 때문에, 문장의 일부분 추출시. 생략된 성분을 복원하지 않으면 요약문의 의미가 불완전하고 모호해 질 수 있다. 본 논문에서는 문서 안에서 중요한 부분을 추출한 뒤, 생략된 성분을 복원하여 요약문의 가독성을 놓이는 방법을 제안한다. Luhn의 방법을 이용하여 문서내의 중요 클러스터를 추출하였고, 기존의 문장분할 및 영 대용어 복원 알고리즘을 사용하여 생략된 성분을 복원하였다. 본 논문에서 제안된 요약 방법은 신문기사와 같이 문장의 수는 많지 않고, 문장의 길이가 비교적 긴 문서를 짧은 문장으로 요약하는 데 효율적이다.

  • PDF

Sentence Compression of Headline-style Abstract for Displaying in Small Devices (작은 화면 기기에서의 출력을 위한 신문기사 헤드라인 형식의 문장 축약 시스템)

  • Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.691-696
    • /
    • 2005
  • In this paper, we present a pilot system that tn compress a Korean sentence automatically using knowledge extracted from news articles and their headlines. A sot of compressed sentences can be presented as an abstraction of a document. As a compressed sentence is of headline-style, it could be easily displayed on small devices, such as mobile phones and other handhold devices. Our compressing system has shown to be promising through a preliminary experiment.

Soccer Video Highlight Summarization for Intelligent PVR (지능형 PVR을 위한 축구 동영상 하이라이트 요약)

  • Kim, Hyoung-Gook;Shin, Dong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.209-212
    • /
    • 2009
  • 본 논문에서는 MDCT기반의 오디오 특징과 영상 특징을 이용하여 축구 동영상의 하이라이트를 효과적으로 요약하는 방식을 제안한다. 제안하는 방식에서는 입력되는 축구 동영상을 비디오 신호와 오디오 신호로 분리한 후에, 분리된 연속적인 오디오 신호를 압축영역의 MDCT계수를 통해 이벤트 사운드별로 분류하여 오디오 이벤트 후보구간을 추출한다. 입력된 비디오 신호에서는 장면 전환점을 추출하고 추출된 장면 전환점으로부터 페널티 영역을 검출한다. 검출된 오디오 이벤트 후보구간과 검출된 페널티 영역장면을 함께 결합하여 축구 동영상의 이벤트 장면을 검출한다. 검출된 페널티 영역 장면을 통해 검출된 이벤트 구간을 다른 이벤트 구간보다 더 높은 우선순위를 갖는 하이라이트로 선정하여 요약본이 생성된다. 생성된 하이라이트 요약본의 평가는 precision과 recall을 통해 정확도를 평가하였다.

  • PDF

A Method of Realtime Mining for Summarization and Discovery of a Casual Relationship based on Multidimensional Stream Data (다차원 스트림 데이터 요약 및 인과 관계 탐사를 위한 실시간 데이터 마이닝 기법)

  • Song, Myung-Jin;Kim, Dae-In;Hwang, Bu-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.152-155
    • /
    • 2010
  • 실시간 데이터 마이닝 기법은 다양한 종류의 센서에서 수집된 다차원 스트림 데이터들 사이에 존재하는 의미있는 정보를 탐사할 수 있다. 전통적인 데이터베이스 시스템에서의 마이닝 기법은 정적인 데이터베이스에 기초하므로 실시간으로 수집되는 스트림 데이터는 시간 속성을 갖는 인터벌 이벤트로 요약되어야 한다. 이 논문은 다차원 스트림 데이터 환경에서 스트림 데이터를 요약하고 이들 사이에 존재하는 인과 관계를 탐사하는 실시간 데이터 마이닝 기법을 제안한다. 제안 기법은 센서에서 수집되는 데이터의 대부분이 객체의 정상적인 상태 데이터임을 고려하여 의미있는 이상 이벤트를 선별하여 전송한다. 그리고 스트림 데이터의 연속성을 고려하며 스트림 데이터를 세 가지 상태의 이벤트로 요약하고 인과 관계 규칙을 탐사한다. 인과 관계 규칙은 시간에 따라 이벤트 발생에 영향력을 미치는 원인 이벤트를 발견함으로써 이벤트의 발생을 미리 예측할 수 있다.

  • PDF

Issues and Empirical Results for Improving Text Classification

  • Ko, Young-Joong;Seo, Jung-Yun
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.150-160
    • /
    • 2011
  • Automatic text classification has a long history and many studies have been conducted in this field. In particular, many machine learning algorithms and information retrieval techniques have been applied to text classification tasks. Even though much technical progress has been made in text classification, there is still room for improvement in text classification. In this paper, we will discuss remaining issues in improving text classification. In this paper, three improvement issues are presented including automatic training data generation, noisy data treatment and term weighting and indexing, and four actual studies and their empirical results for those issues are introduced. First, the semi-supervised learning technique is applied to text classification to efficiently create training data. For effective noisy data treatment, a noisy data reduction method and a robust text classifier from noisy data are developed as a solution. Finally, the term weighting and indexing technique is revised by reflecting the importance of sentences into term weight calculation using summarization techniques.

A Summarization of Multi-Camera Office Event Using User Log Analysis (사용자 로그분석을 이용한 멀티 카메라 사무실 이벤트 요약)

  • Park, Han-Saem;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.186-190
    • /
    • 2008
  • 최근 카메라를 비롯한 다양한 센서 기술 및 디지털 저장장치의 발달로 사용자의 일상생활의 기록인 라이프 로그를 수집하고 분석하는 연구가 활발히 이루어지고 있다. 라이프 로그는 모바일 디바이스에 포함된 다양한 센서를 통해 실외에서 수집되는 경우와 실내에 카메라를 중심으로 한 센서를 설치하여 수집되는 경우로 나누어 볼 수 있으며, 수집된 로그는 다양한 방법을 통해 분석하여 사용자에게 요약이나 검색과 같은 서비스 제공에 활용될 수 있다. 본 논문은 오피스 환경에 다수의 카메라를 설치하여 수집한 실내 비디오 로그 데이터를 대상으로 하며, 사용자의 어플리케이션 로그를 분석하여 요약을 위해 활용한다. 다수의 카메라는 오피스의 가운데 부분을 비추도록 하여, 발생한 하나의 이벤트에 대한 다양한 시점의 영상을 얻을 수 있도록 하였다. 전체 요약 과정은 크게 데이터 어노테이션, 사용자 로그분석을 이용한 이벤트 시퀀스 요약, 도메인 지식을 이용한 카메라 뷰의 선택으로 나뉘어 수행된다. 최종적으로 실험을 통해 제안하는 요약 방법이 좋은 결과를 보임을 확인하였다.

  • PDF

Hybrid Document Summarization using a TextRank Algorithm and an Attentive Recurrent Neural Networks (TextRank 알고리즘과 주의 집중 순환 신경망을 이용한 하이브리드 문서 요약)

  • Jeong, Seok-won;Lee, Hyeon-gu;Kim, Harksoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.47-50
    • /
    • 2017
  • 문서 요약은 입력 문서가 가진 주제를 유지하면서 크기가 축약된 새로운 문서를 생성하는 것이다. 문서 요약의 방법론은 크게 추출 요약과 추상 요약으로 구분된다. 추출 요약의 경우 결과가 문서 전체를 충분히 대표하지 못하거나 문장들 간의 호응이 떨어지는 문제점이 있다. 최근에는 순환 신경망 구조의 모델을 이용한 추상 요약이 활발히 연구되고 있으나, 이러한 방법은 입력이 길어지는 경우 정보가 누락된다는 문제점을 가지고 있다. 본 논문에서는 이러한 단점들을 해소하기 위해 추출 요약으로 입력 문서의 중요한 일부 문장들을 선별하고 이를 추상 요약의 입력으로 사용했을 때의 성능 변화를 관찰한다. 추출 요약을 통해 원문 대비 30%까지 문서를 요약한 후 요약을 생성했을 때, ROUGE-1 0.2802, ROUGE-2 0.1294, ROUGE-L 0.3254의 성능을 보였다.

  • PDF

Multi-Document Summarization Using Tag Cluster (태그 클러스터를 이용한 다중문서요약 기법)

  • Heu, Jee-Uk;Jeong, Jin-Woo;Hong, Hyun-Ki;Lee, Dong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.45-48
    • /
    • 2011
  • 오늘날 인터넷의 빠른 보급으로 인하여 웹 상에 생성되는 문서의 양은 하루가 다르게 늘어나고 있다. 이러한 엄청난 양의 문서들 중 사용자는 자신이 원하는 정보가 담긴 문서를 얻기 위해서는 직접 문서를 검토해야 하며, 많은 시간이 투자 된다는 어려움이 있다. 이러한 사용자들의 어려움을 줄이기 위하여 문서의 핵심을 유지하며 양을 줄이는 다중문서요약기업에 대한 연구가 활발히 진행되어왔다. 본 논문에서는 효율적이고 빠른 문서 요약을 위하여 폭소노미 시스템인 플리커를 통하여 문서 내에 존재하는 각 단어들의 클러스터를 획득하고, 이를 기반으로 단어들의 중요도를 분석하여 중요문장을 추려내는 다중문서요약 기법을 제안한다.

Sentence Abstraction: A Sentence Revision Methodology for Text Summarization (문장추상화: 문서요약을 위한 문장교열 방법론)

  • Kim, Gon;Bae, Jae-Hak J.
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.51-56
    • /
    • 2002
  • 본 논문에서는 문서요약을 위한 문장교열 방법론으로 문장추상화를 생각하였다. 이에 문장추상화의 판단기준이 되는 요소들을 구문분석기를 통해 얻은 정보와, 문장의 구성성분들이 가지는 온톨로지 정보를 바탕으로 선정하였다. 문장추상화에는 Roget 시소러스에 기반한 온톨로지 OfN, 구문분석기 LGPI+ 그리고 이를 활용하는 문장추상기 SABOT를 이용하였다. 본 논문을 통하여 문장추상화가 문서요약을 위한 문장교열 방법의 하나로 가능함을 보였다.

  • PDF

Pointer-Generator Networks for Community Question Answering Summarization (Pointer-Generator Networks를 이용한 cQA 시스템 질문 요약)

  • kim, Won-Woo;Kim, Seon-Hoon;Jang, Heon-Seok;Kang, In-Ho;Park, Kwang-Hyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.126-131
    • /
    • 2018
  • cQA(Community-based Question Answering) 시스템은 사용자들이 질문을 남기고 답변을 작성하는 시스템이다. cQA는 사용자의 편의를 위해 기존의 축적된 질문을 검색하거나 카테고리로 분류하는 기능을 제공한다. 질문의 길이가 길 경우 검색이나 카테고리 분류의 정확도가 떨어지는 한계가 있는데, 이를 극복하기 위해 cQA 질문을 요약하는 모델을 구축할 필요가 있다. 하지만 이러한 모델을 구축하려면 대량의 요약 데이터를 확보해야 하는 어려움이 존재한다. 본 논문에서는 이러한 어려움을 극복하기 위해 cQA의 질문 제목, 본문으로 데이터를 확보하고 필터링을 통해 요약 데이터 셋을 만들었다. 또한 본문의 대표 단어를 이용하여 추상 요약을 하기 위해 딥러닝 기반의 Pointer-generator model을 사용하였다. 실험 결과, 기존의 추출 요약 방식보다 딥러닝 기반의 추상 요약 방식의 성능이 더 좋았으며 Pointer-generator model이 보다 좋은 성능을 보였다.

  • PDF