• Title/Summary/Keyword: sum rate maximization

Search Result 25, Processing Time 0.024 seconds

Closed-form Expressions for Optimal Transmission Power Achieving Weighted Sum-Rate Maximization in MIMO Systems (MIMO 시스템의 가중합 전송률 최대화를 위한 최적 전송 전력의 닫힌 형태 표현)

  • Shin, Suk-Ho;Kim, Jae-Won;Park, Jong-Hyun;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.36-44
    • /
    • 2010
  • When multi-user MIMO (Multiple-Input Multiple-Output) systems utilize a sum-rate maximization (SRM) scheduler, the throughput of the systems can be enhanced. However, fairness problems may arise because users located near cell edge or experiencing poor channel conditions are less likely to be selected by the SRM scheduler. In this paper, a weighted sum-rate maximization (WSRM) scheduler is used to enhance the fairness performance of the MIMO systems. Closed-form expressions for the optimal transmit power allocation of WSRM and corresponding weighted sum-rate (WSR) are derived in the 6-sector collaborative transmission system. Using the derived results, we propose an algorithm which searches the optimal power allocation for WSRM in the 3-sector collaborative transmission system. Based on the derived closed-form expressions and the proposed algorithm, we perform computer simulations to compare performance of the WSRM scheduler and the SRM scheduler with respect to the sum-rate and the log-sum-of-average rates. We further verify that the WSRM scheduler efficiently improves fairness performance by showing the enhanced performance of average transmission rates in low percentile region.

Binary Power Control for Sum Rate Maximization of Full Duplex Transmission in Multicell Networks

  • Vo, Ta-Hoang;Hwang, Won-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.583-585
    • /
    • 2016
  • The recent advances in wireless networks area have led to new techniques, such as small cells or full-duplex (FD) transmission, have also been developed to further increase the network capacity. Particularly, full-duplex communication promises expected throughput gain by doubling the spectrum compared to half-duplex (HD) communication. Because this technique permits one set of frequencies to simultaneously transmit and receive signals. In this paper, we focus on the binary power control for the users and the base stations in full-duplex multiple cellulars wireless networks to obtain optimal sum-rate under the effect interference and noise. We investigate with a scenario in there one carrier is assigned to only one user in each cell and construct a model for this problem. In this work, we apply the binary power control by the its simplification in the implemented algorithm for both uplink and downlink simultaneously to maximize sum data rate of the system. At first, we realize the 2-cells case separately to check the optimal power allocation whether being binary. Then, we carry on with N-cells case in general through properties of binary power control.

  • PDF

Joint Opportunistic Spectrum Access and Optimal Power Allocation Strategies for Full Duplex Single Secondary User MIMO Cognitive Radio Network

  • Yue, Wenjing;Ren, Yapeng;Yang, Zhen;Chen, Zhi;Meng, Qingmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3887-3907
    • /
    • 2015
  • This paper introduces a full duplex single secondary user multiple-input multiple-output (FD-SSU-MIMO) cognitive radio network, where secondary user (SU) opportunistically accesses the authorized spectrum unoccupied by primary user (PU) and transmits data based on FD-MIMO mode. Then we study the network achievable average sum-rate maximization problem under sum transmit power budget constraint at SU communication nodes. In order to solve the trade-off problem between SU's sensing time and data transmission time based on opportunistic spectrum access (OSA) and the power allocation problem based on FD-MIMO transmit mode, we propose a simple trisection algorithm to obtain the optimal sensing time and apply an alternating optimization (AO) algorithm to tackle the FD-MIMO based network achievable sum-rate maximization problem. Simulation results show that our proposed sensing time optimization and AO-based optimal power allocation strategies obtain a higher achievable average sum-rate than sequential convex approximations for matrix-variable programming (SCAMP)-based power allocation for the FD transmission mode, as well as equal power allocation for the half duplex (HD) transmission mode.

Sum Transmission Rate Maximization Based Cooperative Spectrum Sharing with Both Primary and Secondary QoS-Guarantee

  • Lu, Weidang;Zhu, Yufei;Wang, Mengyun;Peng, Hong;Liu, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2015-2028
    • /
    • 2016
  • In this paper, we propose a sum transmission rate maximization based cooperative spectrum sharing protocol with quality-of-service (QoS) support for both of the primary and secondary systems, which exploits the situation when the primary system experiences a weak channel. The secondary transmitter STb which provides the best performance for the primary and secondary systems is selected to forward the primary signal. Specifically, STb helps the primary system achieve the target rate by using a fraction of its power to forward the primary signal. As a reward, it can gain spectrum access by using the remaining power to transmit its own signal. We study the secondary user selection and optimal power allocation such that the sum transmission rate of primary and secondary systems is maximized, while the QoS of both primary and secondary systems can be guaranteed. Simulation results demonstrate the efficiency of the proposed spectrum sharing protocol and its benefit to both primary and secondary systems.

A Signal Subspace Interference Alignment Scheme with Sum Rate Maximization and Altruistic-Egoistic Bayesian Gaming

  • Peng, Shixin;Liu, Yingzhuang;Chen, Hua;Kong, Zhengmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1926-1945
    • /
    • 2014
  • In this paper, we propose a distributed signal subspace interference alignment algorithm for single beam K-user ($3K{\geq}$) MIMO interference channel based on sum rate maximization and game theory. A framework of game theory is provided to study relationship between interference signal subspace and altruistic-egoistic bayesian game cost function. We demonstrate that the asymptotic interference alignment under proposed scheme can be realized through a numerical algorithm using local channel state information at transmitters and receivers. Simulation results show that the proposed scheme can achieve the total degrees of freedom that is equivalent to the Cadambe-Jafar interference alignment algorithms with perfect channel state information. Furthermore, proposed scheme can effectively minimize leakage interference in desired signal subspace at each receiver and obtain a moderate average sum rate performance compared with several existing interference alignment schemes.

Sum-rate Maximization of Zero-forcing Beamforming MIMO Systems with Intercell Interference (다른 셀로부터의 간섭을 고려한 다중안테나 제로 포싱 빔 형성 시스템의 성능 최대화)

  • Ku, Mi-Hyeon;Kim, Dong-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.109-110
    • /
    • 2007
  • The sum-rate capacity of multi-antenna broadcast channels recently has attracted much research interests. However, those effort mainly has focused on a single-cell system. In this paper, we consider a multi-cell system where a transmitter uses zero-forcing beamforming with multiple antennas. We select a linear zero-forcing weight that maximizes the sum-rate when intercell interference exists. With numerical investigation, we will show the sum-rate gain achieved by the proposed method gets larger when the number of interfering cells increases.

  • PDF

Power Allocation Method of Downlink Non-orthogonal Multiple Access System Based on α Fair Utility Function

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.306-317
    • /
    • 2021
  • The unbalance between system ergodic sum rate and high fairness is one of the key issues affecting the performance of non-orthogonal multiple access (NOMA) system. To solve the problem, this paper proposes a power allocation algorithm to realize the ergodic sum rate maximization of NOMA system. The scheme is mainly achieved by the construction algorithm of fair model based on α fair utility function and the optimal solution algorithm based on the interior point method of penalty function. Aiming at the construction of fair model, the fair target is added to the traditional power allocation model to set the reasonable target function. Simultaneously, the problem of ergodic sum rate and fairness in power allocation is weighed by adjusting the value of α. Aiming at the optimal solution algorithm, the interior point method of penalty function is used to transform the fair objective function with unequal constraints into the unconstrained problem in the feasible domain. Then the optimal solution of the original constrained optimization problem is gradually approximated within the feasible domain. The simulation results show that, compared with NOMA and time division multiple address (TDMA) schemes, the proposed method has larger ergodic sum rate and lower Fairness Index (FI) values.

Reference Vector Diversity of Subspace Interference Alignment in Multi-cell Multi-user Uplink Systems (부분공간 간섭 정렬을 이용한 다중 셀 상향링크 시스템에서 합용량 향상을 위한 레퍼런스 벡터 다이버서티)

  • Seo, Jong-Pil;Lee, Yoon-Ju;Kwon, Dong-Seung;Lee, Myung-Hoon;Chung, Jae-Hak
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.23-28
    • /
    • 2010
  • We propose a reference vector diversity method in multi-cell multi-user uplink system with the subspace interference alignment to obtain higher sum rate capacity. The proposed method transmits several reference vectors before the data transmission, and selects the best reference vector to maximize the cell sum rate. The proposed method provides higher sum-rate capacity compared with the previous interferenc alignment. Simulation result exhibits the proposed method improves the sum-rate capacity by 60%.

Sum-Rate Optimal Power Policies for Energy Harvesting Transmitters in an Interference Channel

  • Tutuncuoglu, Kaya;Yener, Aylin
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • This paper considers a two-user Gaussian interference channel with energy harvesting transmitters. Different than conventional battery powered wireless nodes, energy harvesting transmitters have to adapt transmission to availability of energy at a particular instant. In this setting, the optimal power allocation problem to maximize the sum throughput with a given deadline is formulated. The convergence of the proposed iterative coordinate descent method for the problem is proved and the short-term throughput maximizing offline power allocation policy is found. Examples for interference regions with known sum capacities are given with directional water-filling interpretations. Next, stochastic data arrivals are addressed. Finally, online and/or distributed near-optimal policies are proposed. Performance of the proposed algorithms are demonstrated through simulations.

A Near Optimal Linear Preceding for Multiuser MIMO Throughput Maximization (다중 안테나 다중 사용자 환경에서 최대 전송율에 근접하는 선형 precoding 기법)

  • Jang, Seung-Hun;Yang, Jang-Hoon;Jang, Kyu-Hwan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.414-423
    • /
    • 2009
  • This paper considers a linear precoding scheme that achieves near optimal sum rate. While the minimum mean square error (MMSE) precoding provides the better MSE performance at all signal-to-noise ratio (SNR) than the zero forcing (ZF) precoding, its sum rate shows superior performance to ZF precoding at low SNR but inferior performance to ZF precoding at high SNR, From this observation, we first propose a near optimal linear precoding scheme in terms of sum rate. The resulting precoding scheme regularizes ZF precoding to maximize the sum rate, resulting in better sum rate performance than both ZF precoding and MMSE precoding at all SNR ranges. To find regularization parameters, we propose a simple algorithm such that locally maximal sum rate is achieved. As a low complexity alternative, we also propose a simple power re-allocation scheme in the conventional regularized channel inversion scheme. Finally, the proposed scheme is tested under the presence of channel estimation error. By simulation, we show that the proposed scheme can maintain the performance gain in the presence of channel estimation error and is robust to the channel estimation error.