• Title/Summary/Keyword: sum of squared coefficients

Search Result 16, Processing Time 0.02 seconds

Pliable regression spline estimator using auxiliary variables

  • Oh, Jae-Kwon;Jhong, Jae-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.537-551
    • /
    • 2021
  • We conducted a study on a regression spline estimator with a few pre-specified auxiliary variables. For the implementation of the proposed estimators, we adapted a coordinate descent algorithm. This was implemented by considering a structure of the sum of the residuals squared objective function determined by the B-spline and the auxiliary coefficients. We also considered an efficient stepwise knot selection algorithm based on the Bayesian information criterion. This was to adaptively select smoothly functioning estimator data. Numerical studies using both simulated and real data sets were conducted to illustrate the proposed method's performance. An R software package psav is available.

Design of Space Search-Optimized Polynomial Neural Networks with the Aid of Ranking Selection and L2-norm Regularization

  • Wang, Dan;Oh, Sung-Kwun;Kim, Eun-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1724-1731
    • /
    • 2018
  • The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.

A PCA-based MFDWC Feature Parameter for Speaker Verification System (화자 검증 시스템을 위한 PCA 기반 MFDWC 특징 파라미터)

  • Hahm Seong-Jun;Jung Ho-Youl;Chung Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • A Principal component analysis (PCA)-based Mel-Frequency Discrete Wavelet Coefficients (MFDWC) feature Parameters for speaker verification system is Presented in this Paper In this method, we used the 1st-eigenvector obtained from PCA to calculate the energy of each node of level that was approximated by. met-scale. This eigenvector satisfies the constraint of general weighting function that the squared sum of each component of weighting function is unity and is considered to represent speaker's characteristic closely because the 1st-eigenvector of each speaker is fairly different from the others. For verification. we used Universal Background Model (UBM) approach that compares claimed speaker s model with UBM on frame-level. We performed experiments to test the effectiveness of PCA-based parameter and found that our Proposed Parameters could obtain improved average Performance of $0.80\%$compared to MFCC. $5.14\%$ to LPCC and 6.69 to existing MFDWC.

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

Face Deformation Technique for Efficient Virtual Aesthetic Surgery Models (효과적인 얼굴 가상성형 모델을 위한 얼굴 변형 기법)

  • Park Hyun;Moon Young Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.63-72
    • /
    • 2005
  • In this paper, we propose a deformation technique based on Radial Basis Function (RBF) and a blending technique combining the deformed facial component with the original face for a Virtual Aesthetic Surgery (VAS) system. The deformation technique needs the smoothness and the accuracy to deform the fluid facial components and also needs the locality not to affect or distort the rest of the facial components besides the deformation region. To satisfy these deformation characteristics, The VAS System computes the degree of deformation of lattice cells using RBF based on a Free-Form Deformation (FFD) model. The deformation error is compensated by the coefficients of mapping function, which is recursively solved by the Singular Value Decomposition (SVD) technique using SSE (Sum of Squared Error) between the deformed control points and target control points on base curves. The deformed facial component is blended with an original face using a blending ratio that is computed by the Euclidean distance transform. An experimental result shows that the proposed deformation and blending techniques are very efficient in terms of accuracy and distortion.

Parameter Estimation of Coastal Water Quality Model Using the Inverse Theory (역산이론을 이용한 연안 수질모형의 매개변수 추정)

  • Cho, Hong-Yeon;Cho, Bum-Jun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • Typical water quality (WQ) parameters defined in the governing equation of the WQ model are the pollutant loads from atmosphere and watersheds, pollutant release rates from sediment, diffusion coefficient and reaction coefficient etc. The direct measurement of these parameters is very difficult as well as requires high cost. In this study, the pollutant budget equation including these parameters was used to construct the linear simultaneous equations. Based on these equations, the inverse problems were constructed and WQ parameter estimation method minimizing the sum of squared errors between the computed and observed amounts of the mass changes was suggested. WQ parameters, i.e., the atmospheric pollutant loads, sediment release rates, diffusion coefficients and reaction coefficient, were estimated using .this method by utilizing the vertical concentration profile data which has been observed in Cheonsu Bay and Ulsan Port. Values of the estimated parameters show a large temporal variation. However, this technique is persuasive in that the RHS (root mean square) error was less than $5.0\%$ of the observed value ranges and the agreement index was greater than 0.95.