• Title/Summary/Keyword: sum of square for forecasting error

Search Result 4, Processing Time 0.018 seconds

The Comparison of Imputation Methods in Time Series Data with Missing Values (시계열자료에서 결측치 추정방법의 비교)

  • Lee, Sung-Duck;Choi, Jae-Hyuk;Kim, Duck-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.723-730
    • /
    • 2009
  • Missing values in time series can be treated as unknown parameters and estimated by maximum likelihood or as random variables and predicted by the expectation of the unknown values given the data. The purpose of this study is to impute missing values which are regarded as the maximum likelihood estimator and random variable in incomplete data and to compare with two methods using ARMA model. For illustration, the Mumps data reported from the national capital region monthly over the years 2001 ${\sim}$ 2006 are used, and results from two methods are compared with using SSF(Sum of square for forecasting error).

Error Forecasting & Optimal Stopping Rule under Decreasing Failure Rate (감소(減少)하는 고장률(故障率)하에서 오류예측 및 테스트 시간(時間)의 최적화(最適化)에 관한 연구(硏究))

  • Choe, Myeong-Ho;Yun, Deok-Gyun
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.2
    • /
    • pp.17-26
    • /
    • 1989
  • This paper is concerned with forecasting the existing number of errors in the computer software and optimizing the stopping time of the software test based upon the forecasted number of errors. The most commonly used models have assessed software reliability under the assumption that the software failure late is proportional to the current fault content of the software but invariant to time since software faults are independents of others and equally likely to cause a failure during testing. In practice, it has been observed that in many situations, the failure rate decrease. Hence, this paper proposes a mathematical model to describe testing situations where the failure rate of software limearly decreases proportional to testing time. The least square method is used to estimate parameters of the mathematical model. A cost model to optimize the software testing time is also proposed. In this cost mode two cost factors are considered. The first cost is to test execution cost directly proportional to test time and the second cost is the failure cost incurred after delivery of the software to user. The failure cost is assumed to be proportional to the number of errors remained in the software at the test stopping time. The optimal stopping time is determined to minimize the total cost, which is the sum of test execution cast and the failure cost. A numerical example is solved to illustrate the proposed procedure.

  • PDF

Forecasting Fish Import Using Deep Learning: A Comprehensive Analysis of Two Different Fish Varieties in South Korea

  • Abhishek Chaudhary;Sunoh Choi
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.134-144
    • /
    • 2023
  • Nowadays, Deep Learning (DL) technology is being used in several government departments. South Korea imports a lot of seafood. If the demand for fishery products is not accurately predicted, then there will be a shortage of fishery products and the price of the fishery product may rise sharply. So, South Korea's Ministry of Ocean and Fisheries is attempting to accurately predict seafood imports using deep learning. This paper introduces the solution for the fish import prediction in South Korea using the Long Short-Term Memory (LSTM) method. It was found that there was a huge gap between the sum of consumption and export against the sum of production especially in the case of two species that are Hairtail and Pollock. An import prediction is suggested in this research to fill the gap with some advanced Deep Learning methods. This research focuses on import prediction using Machine Learning (ML) and Deep Learning methods to predict the import amount more precisely. For the prediction, two Deep Learning methods were chosen which are Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM). Moreover, the Machine Learning method was also selected for the comparison between the DL and ML. Root Mean Square Error (RMSE) was selected for the error measurement which shows the difference between the predicted and actual values. The results obtained were compared with the average RMSE scores and in terms of percentage. It was found that the LSTM has the lowest RMSE score which showed the prediction with higher accuracy. Meanwhile, ML's RMSE score was higher which shows lower accuracy in prediction. Moreover, Google Trend Search data was used as a new feature to find its impact on prediction outcomes. It was found that it had a positive impact on results as the RMSE values were lowered, increasing the accuracy of the prediction.

A Comparison on Forecasting Performance of STARMA and STBL Models with Application to Mumps Data (공간시계열 자료에 대한 STARMA 모형과 STBL 모형의 예측력 비교)

  • Lee, S.D.;Lee, Y.J.;Park, Y.S.;Joo, J.S.;Lee, K.M.
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.1
    • /
    • pp.91-102
    • /
    • 2007
  • The major purpose of this article is to formulate a class of Space Time Autoregressive Moving Average(STARMA) model and Space Time Bilinear model(STBL), to discuss some of the their statistical properties such as model, identification approaches, some procedure for estimation and the predictions, and to compare the STARMA model with the STBL model. For illustration, The Mumps data reported from eight city & provinces monthly over the years 2001-2006 are used and the result from STARMA and STBL model are compared with using SSF(Sum of Square Prediction Error).