• Title/Summary/Keyword: sulfuric acid corrosion

Search Result 106, Processing Time 0.022 seconds

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

Fluorine Plasma Corrosion Resistance of Anodic Oxide Film Depending on Electrolyte Temperature

  • Shin, Jae-Soo;Kim, Minjoong;Song, Je-beom;Jeong, Nak-gwan;Kim, Jin-tae;Yun, Ju-Young
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • Samples of anodic oxide film used in semiconductor and display manufacturing processes were prepared at different electrolyte temperatures to investigate the corrosion resistance. The anodic oxide film was grown on aluminum alloy 6061 by using a sulfuric acid ($H_2SO_4$) electrolyte of 1.5 M at $0^{\circ}C$, $5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, and $20^{\circ}C$. The insulating properties of the samples were evaluated by measuring the breakdown voltage, which gradually increased from 0.43 kV ($0^{\circ}C$) to 0.52 kV ($5^{\circ}C$), 1.02 kV ($10^{\circ}C$), and 1.46 kV ($15^{\circ}C$) as the electrolyte temperature was increased from $0^{\circ}C$ to $15^{\circ}C$, but then decreased to 1.24 kV ($20^{\circ}C$). To evaluate the erosion of the film by fluorine plasma, the plasma erosion and the contamination particles were measured. The plasma erosion was evaluated by measuring the breakdown voltage after exposing the film to $CF_4/O_2/Ar$ and $NF_3/O_2/Ar$ plasmas. With exposure to $CF_4/O_2/Ar$ plasma, the breakdown voltage of the film slightly decreased at $0^{\circ}C$, by 0.41 kV; however, the breakdown voltage significantly decreased at $20^{\circ}C$, by 0.83 kV. With exposure to $NF_3/O_2/Ar$ plasma, the breakdown voltage of the film slightly decreased at $0^{\circ}C$, by 0.38 kV; however, the breakdown voltage significantly decreased at $20^{\circ}C$, by 0. 77 kV. In addition, for the entire temperature range, the breakdown voltage decreased more when sample was exposed to $NF_3/O_2/Ar$ plasma than to $CF_4/O_2/Ar$ plasma. The decrease of the breakdown voltage was lower in the anodic oxide film samples that were grown slowly at lower temperatures. The rate of breakdown voltage decrease after exposure to fluorine plasma was highest at $20^{\circ}C$, indicating that the anodic oxide film was most vulnerable to erosion by fluorine plasma at that temperature. Contamination particles generated by exposure to the $CF_4/O_2/Ar$ and $NF_3/O_2/Ar$ plasmas were measured on a real-time basis. The number of contamination particles generated after the exposure to the respective plasmas was lower at $5^{\circ}C$ and higher at $0^{\circ}C$. In particular, for the entire temperature range, about five times more contamination particles were generated with exposure to $NF_3/O_2/Ar$ plasma than for exposure to $CF_4/O_2/Ar$ plasma. Observation of the surface of the anodic oxide film showed that the pore size and density of the non-treated film sample increased with the increase of the temperature. The change of the surface after exposure to fluorine plasma was greatest at $0^{\circ}C$. The generation of contamination particles by fluorine plasma exposure for the anodic oxide film prepared in the present study was different from that of previous aluminum anodic oxide films.

Determination of Adsorption Isotherms of Hydrogen on Zirconium in Sulfuric Acid Solution Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.;Chun, Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The phase-shift method and correlation constants, i.e., the unique electrochemical impedance spectroscopy (EIS) techniques for studying the linear relationship between the behavior ($-{\varphi}$ vs. E) of the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) for the optimum intermediate frequency and that ($\theta$ vs. E) of the fractional surface coverage ($0{\leq}{\theta}{\leq}1$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at noble metal (alloy)/aqueous solution interfaces. At a Zr/0.2 M ${H_2}{SO_4}$ aqueous solution interface, the Frumkin and Temkin adsorption isotherms ($\theta$ vs. E), equilibrium constants (K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ for the Frumkin and K = $1.401{\times}10^{-16}\exp(8.1{\theta})mol^{-1}$ for the Temkin adsorption isotherm), interaction parameters (g = 3.5 for the Frumkin and g = 8.1 for the Temkin adsorption isotherm), rates of change of the standard free energy (r = $8.7\;kJ\;mol^{-1}$ for g = 3.5 and r = $20\;kJ\;mol^{-1}$ for g = 8.1) of H with $\theta$, and standard free energies ($96.13{\leq}{\Delta}G^0_{\theta}{\leq}104.8\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ and $0{\leq}{\theta}{\leq}1$ and ($94.44<{\Delta}G^0_{\theta}<106.5\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-16}\exp(-8.1{\theta})mol^{-1}$ and $0.2<{\theta}<0.8$) of H are determined using the phase-shift method and correlation constants. At 0.2 < $\theta$ < 0.8, the Temkin adsorption isotherm correlating with the Frumkin adsorption isotherm, and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are probably the most accurate, useful, and effective ways to determine the adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at highly corrosion-resistant metal/aqueous solution interfaces.

The Influence of Nano Synthesized Polymer Paint on Durability of Concrete (나노합성 무기질 폴리머계 표면처리제가 콘크리트의 내구성에 미치는 영향)

  • Beak, Jong-Myeong;Park, Youg-Keol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • This experiment was compared and analyzed between the original surface paint through chloride penetration, neutralization, freeze-thaw and chemical corrosion resistance measuring internal structure and volume of voids in order to evaluate the effect of increase in durability of the newly modeled nano synthesized polymer paint painted on concrete surface which results improvement on air permeability to increase the durability of concrete structures. The test result of measuring volume of void and inner structure, concrete, spreaded with nano synthesized polymer paint, showed decreasing trend of pore volume in the range of less than $0.1{\mu}m$ and more than $0.3{\mu}m$. Also, using an electron microscope inside showed tightness of hydration texture. Chloride penetration depth of concrete, painted with nano synthesized polymer paint, was decreased more than 92% compared to non-painted concrete and 70% with water-based epoxy painted concrete. Especially, chemical corrosion resistance test set with aqueous solution of 5% sulfuric acid, non-painted concrete and water-based epoxy painted concrete showed weight loss of 4% after dipping for 12 days. On the other hand, concrete painted with nano synthesized polymer paint showed 1.7% weight loss under the same condition. Also, it showed great result of appearance under the criteria of Tsivilis et al.

Analysis of Fiber Damage data Due to Physical and Chemical Causes (물리적, 화학적 원인에 의한 섬유 손상 데이터 분석)

  • Ji-Young, Seo;You, Jae-Doo;Dong-Min, Lee;Cho-Won, Park;Young-Wook, Woon
    • Journal of Industrial Convergence
    • /
    • v.21 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, the physical and chemical fiber damage caused by knives, scissors, and chemicals was analyzed and used as technical data to determine the cause of the damage. Using 4 types of knives, 5 types of scissors and 4 types of chemicals(Sulfuric Acid, Hydrochloric Acid, Sodium Hydroxide, Potassium Hydroxide) physical and chemical to Cotton, Wool, Polyester, Rayon, T/C (Polyester 50%, Cotton 50%), T/W (Polyester 50%, Wool 50%) Damages were created and analyzed for damage caused by tools and chemicals. For penetrating damage caused by knives and scissors, 'V' type damage was generally seen when the blade part was penetrated, 'T', 'ㅁ', ''C' type damage was found, and in the case of scissors, 'Y' ' This type of damage was common. Fiber damage caused by chemicals showed various damage such as remanent trace, corrosion, degraded, contracting, and color changes. Physical damage of fibers showed differences in characteristics according to the shape characteristics of tools, and chemical damage showed differences in characteristics according to chemicals and types of fibers.

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System (동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술)

  • Kim, Wan-Suk;Kim, Seung-Soo;Kim, Gye-Nam;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.