• Title/Summary/Keyword: sulfur trioxide decomposition

Search Result 4, Processing Time 0.015 seconds

$SO_3$ decomposition over Cu/Fe/$Al_2O_3$ granules with controlled size for hydrogen production in SI thermochemical cycle (황-요오도 열화학 수소제조 공정에서 다양한 크기의 Cu/Fe/$Al_2O_3$ 구형 촉매를 이용한 삼산화항 분해)

  • Yoo, Kye-Sang;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Cu/Fe/$Al_2O_3$ granules with various sizes have been prepared by a combination of sol-gel and oil drop method for the use in sulfur trioxide decomposition, a subcycle in thermochemical sulfur-iodine cycle to split water in the hydrogen and oxygen. The size of composite granules have been mainly changed by the flow-rate of the gel mixture before dropping in the synthesis. The structural properties of the samples were comparable with granule size. In the reaction, the catalytic activity was enhanced by decreasing size in the entire reaction temperature ranges.

NUMERICAL ANALYSIS OF A SO3 PACKED COLUMN DECOMPOSITION REACTOR WITH ALLOY RA 330 STRUCTURAL MATERIAL FOR NUCLEAR HYDROGEN PRODUCTION USING THE SULFUR- IODINE PROCESS

  • Choi, Jae-Hyuk;Tak, Nam-Il;Shin, Young-Joon;Kim, Chan-Soo;Lee, Ki-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1275-1284
    • /
    • 2009
  • A directly heated $SO_3$ decomposer for the sulfur-iodine and hybrid-sulfur processes has been introduced and analyzed using the computational fluid dynamics (CFD) code CFX 11. The use of a directly heated decomposition reactor in conjunction with a very high temperature reactor (VHTR) allows for higher decomposition reactor operating temperatures. However, the high temperatures and strongly corrosive operating conditions associated with $SO_3$ decomposition present challenges for the structural materials of decomposition reactors. In order to resolve these problems, we have designed a directly heated $SO_3$ decomposer using RA330 alloy as a structural material and have performed a CFD analysis of the design based on the finite rate chemistry model. The CFD results show the maximum temperature of the structural material could be maintained sufficiently below 1073 K, which is considered the target temperature for RA 330. The CFD simulations also indicated good performance in terms of $SO_3$ decomposition for the design parameters of the present study.

The Kientic Study of Ozone$(O_3)$ with Sulfur Trioxide#(SO_3)$ in the Gas Phase (기체상태에서의 오존$(O_3)$과 삼산화황$(SO_3)$의 반응연구)

  • Kwon Young Sik
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.644-651
    • /
    • 1992
  • The kinetics of the gas phase reaction of ozone(∼0.5 torr) with sulfur trioxide was investigated in the range of 6∼12 torr pressure at 69∼150${\circ}C$. The reaction rate of ozone with sulfur trioxide was faster than the reaction rate of $O_3 in the presence of CO_2 alone. No evidence for a molecular reaction of O_3 with SO_3 was found and the faster rate is probably due to impurity (HX) from the SO_3 reactant which gives rise to a chain reaction initiated by O_3 + HX → OH + O_2 + X and also SO_3 has a larger collision diameter, which may be attributed to the O3 thermal decomposition more feasibly. The proposed experimental law [-d(O_3)/dt] = k_a(SO_3)(O_3) + k_b(O_3)^{3/2} gives a rate constant ka(M-1 s-1) = (1.55 {\pm} 0.67) {\times} 105 e-{(9.27 0{\pm}0.43)kcal/RT}.$

  • PDF

A DYNAMIC SIMULATION OF THE SULFURIC ACID DECOMPOSITION PROCESS IN A SULFUR-IODINE NUCLEAR HYDROGEN PRODUCTION PLANT

  • Shin, Young-Joon;Chang, Ji-Woon;Kim, Ji-Hwan;Park, Byung-Heung;Lee, Ki-Young;Lee, Won-Jae;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.831-840
    • /
    • 2009
  • In order to evaluate the start-up behavior and to identify, through abnormal operation occurrences, the transient behaviors of the Sulfur Iodine(SI) process, which is a nuclear hydrogen process that is coupled to a Very High Temperature Gas Cooled Reactor (VHTR) through an Intermediate Heat Exchanger (IHX), a dynamic simulation of the process is necessary. Perturbation of the flow rate or temperature in the inlet streams may result in various transient states. An understanding of the dynamic behavior due to these factors is able to support the conceptual design of the secondary helium loop system associated with a hydrogen production plant. Based on the mass and energy balance sheets of an electrodialysis-embedded SI process equivalent to a 200 $MW_{th}$ VHTR and a considerable thermal pathway between the SI process and the VHTR system, a dynamic simulation of the SI process was carried out for a sulfuric acid decomposition process (Second Section) that is composed of a sulfuric acid vaporizer, a sulfuric acid decomposer, and a sulfur trioxide decomposer. The dynamic behaviors of these integrated reactors according to several anticipated scenarios are evaluated and the dominant and mild factors are observed. As for the results of the simulation, all the reactors in the sulfuric acid decomposition process approach a steady state at the same time. Temperature control of the inlet helium is strictly required rather than the flow rate control of the inlet helium to keep the steady state condition in the Second Section. On the other hand, it was revealed that the changes of the inlet helium operation conditions make a great impact on the performances of $SO_3$ and $H_2SO_4$ decomposers, but no effect on the performance of the $H_2SO_4$ vaporizer.