• Title/Summary/Keyword: sulfur gas

Search Result 569, Processing Time 0.023 seconds

Standardized Protocols for Measuring Volatile Sulfur Compounds: Scientific Foundations and Methodologies

  • Ji-Youn Kim;Ji-Rak Kim;Jin-Seok Byun;Jae-Kwang Jung
    • Journal of Oral Medicine and Pain
    • /
    • v.49 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • Halitosis is defined as a nasty odor emanating through the mouth and is primarily related to the enhanced concentration of volatile sulfur compounds (VSCs). VSC measurements have been commonly used for experimental comparison and clinical diagnosis. As quantitative methods for comparative analyses of oral malodor, gas chromatography devices have been most commonly used to quickly and easily determine the concentration of several gas components of VSCs, which are agents primarily responsible for halitosis. The concentrations of VSCs fluctuate dynamically depending on contributing factors, including various oral/systemic conditions, intake of medicine and food/drink, oral hygiene, and even routine daily activities. Therefore, the exact analysis of VSCs requires the appropriate standardization of not only exact measurement techniques but also participant conditioning with scientific considerations. Thus, this paper describes the experimental standardizations commonly recommended in previous literature and their scientific background.

Behavior of Sulfur-containing Compounds in High Temperature Pyrolysis of Coals (석탄의 고온열분해시 황화합물의 거동 연구)

  • 정봉진
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.269-275
    • /
    • 2002
  • Experimental studies are carried out to find the behavior of sulfur compounds which are evolved during high temperature pyrolysis of coals at the smelting reduction process for iron ore. Three kinds of bituminous coals, such as Hunter & Mt. Thorley (Australia), and Ensham (South Africa) are used. And forms of sulfur compound and their amounts are analyzed at the temperature ranges of 800~110$0^{\circ}C$. Then H$_2$S is the major gas, but CS$_2$ and COS are minor gases. Sulfur compounds in three coals are distributed into the volatiles (gas & tar) and coal char as the ratio of approximately 50%:50%, respectively.

Comparison of the Sulfur Dioxide Primary Standard Gases of NPL and KRISS

  • O, Sang Hyeop;Kim, Byeong Mun;Mun, Dong Min;Kim, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1341-1344
    • /
    • 2001
  • Comparison of sulfur dioxide primary standard gases of the Korea Research Institute of Standards and Science (KRISS, Korea) and the National Physical Laboratory (NPL, UK) was performed. 100 ${\times}$10-6 mol/mol and 1,000 ${\times}$10-6 mol /mol primary standard gases (designated NPL S115 and S114, respectively) prepared gravimetrically and validated in NPL were used as transfer standards. Transfer standards were analyzed by NDIR sulfur dioxide analyzer and compared with KRISS PSM 112-03-624 and PSM 112-03-625 prepared gravimetrically. Adsorption corrected relative deviations of the primary standard gases were agreed to within 0.1%, and this agreement is within the expanded uncertainties (k = 2) of the primary standards at the two laboratories.

Sulfur Poisoning of Ni Anode as a Function of Operating Conditions in Solid Oxide Fuel Cells (고체산화물 연료전지의 운전 조건에 따른 니켈 전극 황 피독 현상)

  • Lee, Ho Seong;Lee, Hyun Mi;Lim, Hyung-Tae
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.893-899
    • /
    • 2018
  • In the present study, we investigated the sulfur poisoning of the Ni anode in solid oxide fuel cells (SOFCs) as a function of operating conditions. Anode supported cells were fabricated, and sulfur poising tests were conducted as a function of current density, $H_2S$ concentration and humidity in the anode gas. The voltage drop was significant under the higher current density (${\sim}714mA/cm^2$) condition, while it was much reduced under the lower current density (${\sim}389mA/cm^2$) condition, at 100 ppm of $H_2S$. A secondary voltage drop, which occurred only at the high current density, was attributed to Ni oxidation in the anode. Thus, operation at high current density with high $H_2S$ concentration may lead to permanent deterioration in the anode. The effect of water content (10%) on the sulfur poisoning was also investigated through a constant current test (${\sim}500mA/cm^2$) at 10 ppm of $H_2S$. The cell operating with 10% wet anode gas showed a much smaller initial voltage drop, in comparison with a dry anode gas. The present study indicates that operating conditions, such as gas humidity and current density, should be carefully taken into account, especially when fuel cells are operated with $H_2S$ containing fuel.

Odor Characteristics of Malodorous Sulfur-containing Gas Emitted from a Sewer and Its Outlets (하수관거 및 토구에서 발생하는 유황계 화합물 악취특성)

  • Park, Sang Jin;Kwon, Soo Youl
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.6
    • /
    • pp.477-483
    • /
    • 2014
  • Objectives: This study was carried out to investigate the characteristics of odors emitted from sewage in a sanitary sewer and its outlets. Methods: The concentration of mal-odorous sulfur was analyzed by gas chromatograph, and odor intensity was estimated by an on-site sensory test. Odor intensity calculated from instrumental analysis results was compared with odor intensity observed at field. Results: As a results, the concentration of $H_2S$ ranged from 2.4 ppb to 5,889 ppb (average 703 ppb), while $CH_3SH$, $(CH_3)_2S$, and $(CH_3)_2S_2$ showed from 10 ppb to 554 ppb (average 119 ppb) and from 20 ppb to 332 ppb (average 70 ppb) and from 2.7 ppb to 8.1 ppb (average 5 ppb) individually. Average odor intensity observed in the field was degree three. Odor intensity calculated from sulfur compound concentration was confirmed as similar to the observed odor intensity because the coefficient of variance between the observed and the calculated intensities was less than one. Conclusion: It was expected that the results of this study will be helpful to design a deodorizing device to reduce odor emissions from sewerage facilities in the future.

Flue Gas Sulfur Dioxide Removal Performance of a Bench-Scale Spray Absorption/Drying Reactor (실험실적 규모의 분무흡수건조반응기의 배출가스 중 아황산가스 처리성능 연구)

  • 동종인;구우회;임대현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 1996
  • The main purpose of this study was to investigate sulfur dioxide removal performance of flue gas desulfurization system utilizing a Spray Absorption/Drying Reactor. In this system, the size of droplets was considered the most significant factor and tested using a PDA system. Lime slurry flow rate, operating temperature, calcium/sulfur (Ca/S) ratio and applied air pressure were selected as major operation variables and tested/analyzed in terms of system performance. The results are as follows. 1. The $SO_2$ removal efficiencies were 49%, 74%, 85% for Ca$(OH)_2$ slurry flow rate of 10, 20, 30 ml/min, which implies that the increase of slurry flow rate improves removal efficiency. The optimum slurry flow rate in this study was, however, considered 20 ml/min because of constraints of system troubles and absorbent utilization. 2. As Ca/S ratio increased, $SO_2$ removal efficiency was observed to increase. 3. As air pressure, at the atomizing nozzole, increased from 3 to 5 $kg/cm^2, SO_2$ removal efficiency increased from 74% to 80%, because of droplet size reduction due to pressure increase during atomizing process and the increase of surface area, helping mass transfer between gas and liquid phase.

  • PDF

A Study on the Removal Reaction Characteristics of Sulfur Dioxide (대기오염 물질인 $SO_2$ 제거반응 특성 연구)

  • 강순국;정명규
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.41-52
    • /
    • 1995
  • The effects of reaction temperature, SO2 and CO2 concentration in an air gas stream, particle sizes of limestone on the reactivity and capacity of SO2 removal have been determined in a thermogravimetric analyser(TGA). The apparent reaction order of sulfation reaction of pre-calcined lime(CaO) with respect to SO2 is found to be close to unity. The apparent activation energies are found to be 17,000 kcal/kmol for sulfation of pre-calcined lime and 19,500 kcal/kmol for direct sulfation of limestone(CaCO3). The initial sulfation reaction rate of pre-calcined lime increases with increasing temperature, whereas the sulfur capture capacity exhibits a maximum value at 90$0^{\circ}C$. In direct sulfation of limestone, sulfation reactivity and sulfur capature capacity of sorbent increase with increasing temperature and decreasing CO2 concentration in a gas bulk stream. The main pare of pre-calcined lime is shifted to the larger pore sizes and pore volume decreases with increasing sulfation time and temperature. The surface area of lime decreases with increasing calcination temperature under an air atmosphere, whereas is yearly constant under a CO2(5, 10%) atmosphere in a gas stream.

  • PDF

Study on the Sulfide Corrosion to the Internal Surface of Transportation Pipeline

  • Zhang, Yiling;Qi, Ping;Kong, Dehong
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.193-196
    • /
    • 2008
  • This article briefly tests and analyzes the sulfur content and the distribution of active sulfur in the crude oil of Kurkow Kazakhstan and Siberian Russian, and discusses the relationship between active sulfur content and total sulfur content, active sulfur and corrosion. At the same time, it measures the open circuit potential of X70 steel and X60 steel witch have been immerged in the above two kind of crude oil for a period of time, discusses the sulfur corrosion to metal.

Comparison of Solid Phase Microextraction-Gas Chromatograph/Pulsed Flame Photometric Detector (SPME-GC/PFPD) and Static Headspace-Gas Chromatograph/Pulsed Flame Photometric Detector (SH-GC/PEPD) for the Analysis of Sulfur-Containing Compounds (Solid phase microextraction-gas chromatograph/pulsed flame photometric detector(SPME-GC/PFPD)와 static headspace-gas chromatograph/pulsed flame photometric detector(SH-GC/PEPD)를 이용한 황 함유 화합물들의 분석 방법 비교)

  • Yang, Ji-Yeon;Kim, Young-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.695-701
    • /
    • 2005
  • Efficient method was established for analysis of sulfur-containing compounds, including dimethyl disulfide, dimethyl trisulfide, 3-methyl thiophene, allyl mercaptan, 2-methyl-3-furanthiol, and methional. Sulfur-containing compounds were extracted through solid phase microextraction (SPME) or static headspace extraction (SH), and quantified using gas chromatograph equipped with pulsed flame photometric detector. All sulfur compounds, except ally mercaptan, showed higher detection response when dissolved in hexane than in dichloromethane. Linear range was $10^2-10^4$. Dimethyl trisulfide showed lowest limit of detection (LOD) value of 15.2 ppt, and methional highest of 70.5 ppb. Highest extraction efficiency for sulfur-containing compounds, particularly polar and small molecular weight compounds, was observed in 75mm carboxen/polydimethylsiloxane fiber, followed by 65mm polydimethylsiloxane/divinylbenzene and 100mm polydimethylsiloxane. Compared to SPME, less sulfur-containing compounds could be analyzed by SH, mainly due to its low extraction efficiency, although lower amount of artifacts were formed during sample preparation.

Preparation and Treatment of Sulfur Dioxide Gas Generating Agent for Storage of Grape Fruits (포도 저장을 위한 아황산가스 발생제의 제조 및 처리 방법)

  • Choi, Seong-Jin
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.791-795
    • /
    • 2008
  • In order to establish the method to prepare and use the sulfur dioxide gas generating agent in low temperature storage of grape fruits, the $SO_2$ generation capacity from various sulfite compounds was investigated, and the method to regulate $SO_2$ gas generation and to detect the gas was developed. The conidial germination and mycelium growth of Botrytis cinerea which causes gray mold disease during grape fruit storage was completely inhibited at the $SO_2$ gas concentration of 400 ppm and 3200 ppm, respectively. Sodium hydrosulfite generated the most amount of $SO_2$ gas among the investigated 5 different sulfite or bisulfite compounds. By adjusting the number of pinholes on packaging film of the compound or by adding pH adjusting agent, e.g. citric acid or phosphates, it was possible to regulate the amount and duration of $SO_2$ gas generation from the compound. Because malachite green was quantitatively discolored by $SO_2$ gas, the solution or impregnated paper with the compound could be practically utilized as a indicator detecting $SO_2$ gas. Finally, when Muscat Bailey A grape was stored at low temperature with $SO_2$ gas generating agent, the disease incidence was reduced after storage.