• 제목/요약/키워드: sulfonated block copolymer

검색결과 20건 처리시간 0.024초

고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석 (Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes)

  • 김애란
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

Synthesis of Well Defined Sulfonated Block Copolymers by Atom Transfer Radical Polymerization

  • Baek Kyung-Youl;Balsara Nitash P.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.332-332
    • /
    • 2006
  • Well difined sulfonated styrene and n-butyl acrylate (nBA) block copolymers were synthesized by CuBr catalyzed living radical polymerization followed by acification by thermolysis. Neopentyl styrene sulfonate (NSS) was polymerized with PnBA macroinitator precursor ($M_{n}=19,500,\;PDI\;<\;1.09$) and CuBr catalyst with N,N,N',N' -pentamethylethyleneamine (PMDETA) to give nBA-NSS block copolymer with narrow polydispersity ($M_{n}=29,900,\;PDI\;<\;1.15$). PNSS segments in the block copolymer were then acidified by thermolysis at $150^{\circ}C$ resulting in polystyrene segments with 100 % sulfonic acid groups.

  • PDF

연료전지용 Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer의 고분자 전해질 분리막 (Polymer Electrolyte Membranes of Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer for Fuel Cell)

  • 에드윈 가르시아;정범석
    • 멤브레인
    • /
    • 제29권5호
    • /
    • pp.252-262
    • /
    • 2019
  • 서로 다른 술폰화 정도에 따라 sulfonated star branched poly(styrene-b-butadiene-b-styrene) triblock copolymer (SSBS)가 합성되었다. 술폰화된 butadiene block은 FT-IR spectroscopy로 확인할 수 있다. 술폰화 정도를 측정 비교하기 위해서 산-염기 적정을 통하여, ion exchange capacity (IEC)를 계산하였다. 술폰화된 SSEB 전해질막은 높은 water uptake와 proton conductivity를 보였다. 실온에서 25 mol% 술폰화된 SSBS는 0.114 S/cm라는 높은 값을 나타냈으며, 이는 Nafion과 비슷한 수치였다. 일정한 상대 습도에서 온도의 증가는 현저하게 높은 수소이온전도도를 나타냄을 알 수 있었다. 모든 술폰화된 막은 Nafion과 비교했을 때 낮은 methanol 투과도를 보여주었다. AFM을 이용하여 술폰화된 전해질막의 구조는 이른바 분리된 나노구조의 미세상과 ionic channel의 접속으로 이루어졌음을 확인할 수 있었다.

연료전지용 양이온 전도성이 증가된 디페닐 단위를 갖는 블록공중합체 혼성막 제조 및 특성 (Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells)

  • 김애란
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.465-470
    • /
    • 2017
  • Sulfonated fluorinated block copolymers having diphenyl units were mixed with the sulfonated cationic conductive polymers at an optimum mixing ratio to form hybrid membranes for fuel cells and their characteristics were studied. 2D and 3D AFM topology analysis confirmed that the number of hydrophilic units in the hybrid membrane was improved. Through the FE-SEM, the microstructure of the hybrid membrane implied hydrogen bonding and pi-pi interactions, and EDAX confirmed carbon, oxygen, sulfur, and fluorine. The thermogravimetric analysis showed that the hybrid membrane was thermally stable and the hydrophilicity of the hybrid membrane was increased by the contact angle of water droplets. As a result, it was confirmed that the cation conductivity increased by a factor of 1.8 times as the number of acidic domains in the hybrid film increased.

서로 다른 친수성구조를 가지는 고분자전해질 연료전지용 멀티블록형 술폰산화 폴리아릴렌에테르술폰 전해질막의 합성 및 특성 분석 (Synthesis and Characterization of Multi-Block Sulfonated Poly (Arylene Ether Sulfone) Polymer Membrane with Different Hydrophilic Moieties for PEMFC)

  • 육진옥;이소정;양태현;배병찬
    • 전기화학회지
    • /
    • 제18권2호
    • /
    • pp.75-80
    • /
    • 2015
  • 방향족 친핵성 치환반응을 이용하여 멀티블록형 sulfonated poly(arylene ether sulfone)(SPAES) 공중합체를 합성하였다. 서로 다른 말단(F- 또는 OH-말단)을 가지는 친수성 및 소수성 올리고머를 합성한 후 이를 이용하여 고분자 전해질 막을 합성하였다. 각기 다른 말단이 블록공중합체의 분자량에 미치는 영향을 분석하였고, 서로 다른 친수성구조가 블록고분자의 특성에 어떠한 영향을 미치는지 분석하였다. 합성된 멀티블록고분자는 70%이상의 습도에서 나피온 막과 비슷하거나 우수한 이온전도도를 나타내었고, 특히 SPAES 9의 경우 전습도 영역에서 SPAES 10보다 높은 이온전도도를 보였는데, 이는 친수성 블록내의 술폰산기의 부분 농도가 높아짐에 따라 친수성-소수성 간의 상분리가 발달되어 이온전도도가 향상된 것으로 보인다.

Highly Sulfonated Poly(Arylene Biphenylsulfone Ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes

  • Lee, Kyu Ha;Chu, Ji Young;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1763-1770
    • /
    • 2013
  • A series of the block copolymers were successfully synthesized from post-sulfonated hydrophilic and hydrophobic macromers via three-step copolymerization. The degrees of sulfonation (DS) of the copolymers (10%, 30%, or 50%) were controlled by changing the molar ratio of the hydrophilic and hydrophobic parts. The resulting block copolymers were characterized by $^1H$ NMR and other technologies. The membranes were successfully cast using dimethyl sulfoxide (DMSO) solution at $100^{\circ}C$. The copolymers were characterized to confirm chemical structure by $^1H$ NMR and FT-IR. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated that all sulfonated block copolymers exhibited good thermal stability with an initial weight loss at temperatures above $240^{\circ}C$. The membranes showed acceptable ion exchange capacity (IEC) and water uptake values in accordance with DS. The maximum proton conductivity was 184 mS $cm^{-1}$ in block copolymer-50 at $60^{\circ}C$ and 100% relative humidity, while the conductivity of Nifion-115 was 160 mS $cm^{-1}$ under the same measurement conditions. AFM images of the block copolymer membranes showed well separated the hydrophilic and hydrophobic domains. From the observed results it is that the prepared block membranes can be considered as suitable polymer electrolyte membranes for the application of polymer electrolyte membrane fuel cells (PEMFC).

Synthesis and Characterization of Sulfonated Poly(arylene ether) Polyimide Multiblock Copolymers for Proton Exchange Membranes

  • Lee, Hae-Seung;Roy Abhishek;Badami Anand S.;McGrath James E.
    • Macromolecular Research
    • /
    • 제15권2호
    • /
    • pp.160-166
    • /
    • 2007
  • Novel multiblock copolymers, based on segmented sulfonated hydrophilic-hydrophobic blocks, were synthesized and investigated for their application as proton exchange membranes. A series of segmented sulfonated poly(arylene ether sulfone)-b-polyimide multiblock copolymers, with various block lengths, were synthesized via the coupling reaction between the terminal amine moieties on the hydrophilic blocks and naphthalene anhydride functionalized hydrophobic blocks. Successful imidization reactions required a mixed solvent system, comprised of NMP and m-cresol, in the presence of catalysts. Proton conductivity measurements revealed that the proton conductivity improved with increasing hydrophilic and hydrophobic block lengths. The morphological structure of the multiblock copolymers was investigated using tapping mode atomic force microscopy (TM-AFM). The AFM images of the copolymers demonstrated well-defined nanophase separated morphologies, with the changes in the block length having a pronounced effect on the phase separated morphologies of the system. The self diffusion coefficient of water, as measured by $^1H$ NMR, provided a better understanding of the transport process. Thus, the block copolymers showed higher values than Nafion, and comparable proton conductivities in liquid water, as well as under partially hydrated conditions at $80^{\circ}C$. The new materials are strong candidates for use in PEM systems.

Pt 나노 입자가 도입된 연료전지용 탄화수소계 고분자 전해질 복합막의 제조 및 특성 (Fabrication of Hydrocarbon Polymer Electrolyte Composite Membrane Incorporated with Pt Nanopartle for PEMFC and Its Characteristics)

  • 이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.246-251
    • /
    • 2017
  • To fabricate a hydrocarbon polymer electrolyte composite membrane incorporated with Pt nanoparticle, the polymer electrolyte membrane made of a sulfonated-fluorinated hydrophilic-hydrophobic block copolymer (SFBC) and sulfonated poly (ether ether ketone) (SPEEK) blend in the wight ratio of 1 : 1 was synthesized, and a simple drying process was used in order to incorporate Pt nanoparticle into the SFBC/SPEEK film by reducing platinum (II) bis (acetylacetonate), Pt $(acac)_2$. The distribution of the Pt nanoparticles was observed by transmission electron microscopy (TEM), and mechanical and thermal properties were tested by universal testing machine (UTM) and thermogravimetry analyzer (TGA). Cation conductivity, ion exchange capacity (IEC) and I-V characteristics were estimated.