• Title/Summary/Keyword: sulfide minerals

Search Result 145, Processing Time 0.025 seconds

Study on the Oxidation and Dissolution Characteristics of Biogenic Mackinawite (미생물 기원 맥키나와이트의 산화 및 용해 특성 연구)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Jeong, Jong-Tae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.155-162
    • /
    • 2012
  • We observed characteristic oxidation and dissolution phenomena induced by dissolved oxygen for mackinawite that is produced via sulfate-reducing bacteria (SRB) living in anaerobic environments such as soils and groundwater. We tried to recognize the role of the sulfide minerals that usually coexist with some stabilized radionuclides (e.g., reduced uranium), which can be reoxidized and redissolved by an oxygen-rich groundwater invaded into a contaminated area. The mackinawite produced by 'Desulfovibrio desulfuricans', a sulfate-reducing bacterium, was conducted to be dissolved for 2 weeks by some oxidants such as 'hydrogen peroxide' and 'sodium nitrite'. Although mineralogical oxidation and dissolution characteristics were different from each other according to the oxidants, the initially oxidized solution was early stabilized through the oxygen consumption by ${\mu}m$-sized sulfide particles and the resultant increase of sulfate in solution. From these results, we can anticipate that the large amount of sulfide minerals generated by SRB can not only repress the anoxic environment to be disturbed by the consumption of oxygen in groundwater, but also contribute to stabilize the reduced/precipitated radionuclides as a buffer material for a long time.

Spectral Induced Polarization Response Charaterization of Pb-Zn Ore Bodies at the Gagok mine (가곡광산 연-아연 광체의 광대역유도분극 반응 특성)

  • Shin, Seungwook;Park, Samgyu;Shin, Dongbok
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.247-252
    • /
    • 2014
  • Gagok Mine, which is skarn deposits, includes sulfide minerals such as sphalerite, galena, chalcopyrite, and pyrrhotite. To explore these minerals, spectral induced polarization (SIP) is relatively effective compared to other geophysical exploration methods because there is a strong IP effect caused by electrode polarization. In the SIP, the chargeability related to sulfide mineral contents and the time constant related to the grain size of the minerals are obtained. For this reason, we aim to compare difference in the mineralized characteristics between two orebodies in the Gagok Mine by using the chargeability and the time constant. For this study, we sampled ores from the south of Wolgok orebody and the north of Sungok orebody. In order to recognize the mineralization characteristics, the metal content of the samples was measured by a potable XRF and the SIP data of the samples were acquired by using a laboratory SIP measurement system. As a result, the metals in the samples such as Pb, Zn, Cu, and Fe were detected by the portable XRF measurement. In particular, the Fe and Zn contents were far higher than the other metals. The Fe and the Zn were caused by the sphalerite and the pyrrhotite through microscopy. The Wolgok orebody had higher sulfide mineral contents than the Sungok orebody and the result corresponded with the chargeability result. However, we considered that the Sungok orebody had a larger sulfide mineral grain size than the Wolgok orebody because the time constant of the Sungok orebody was larger.

Research Trends in Induced Polarization Exploration in Korea (국내 유도분극 탐사의 연구동향)

  • Park, Samgyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2021
  • Induced polarization (IP) was first published in a Korean academic journal in 1973, and it was soon applied to coal and metal ore exploration. Then, in universities and research institutes, IP modeling studies using the finite element approach and experimental studies on IP responses for artificial samples were conducted. In the mid-1980s, the spectral IP (SIP) measurement module was introduced to Korea, and physical scale modeling and inversion approaches were developed. Due to the decline of the mineral resource industry, this method was not actively applied. However, the SIP method was not applied In the 1990s, IP exploration was applied in the investigation of hydrothermal deposits of sulfide minerals and bentonite mineralization zones, as well as to areas where the groundwater was contaminated by intruding seawater. In the 2000s, three-dimensional inversion of the IP approach was developed, and high-precision geophysical exploration was required to secure domestic and overseas mineral resources, so SIP experiments on rock samples and approaches for field exploration were developed. The SIP approach was proven useful for the exploration of metal deposits containing sulfide minerals by applying it to explore the mineralization zone of gold-silver deposits in the Haenam region. The IP method is considered to be effective in exploring critical minerals (lithium, cobalt, and nickel) in high-tech industries. It also is expected to be useful for environmental and geotechnical investigations.

Characterization of Uranium Removal and Mineralization by Bacteria in Deep Underground, Korea Atomic Energy Research Institute (KAERI) (한국원자력연구원 지하심부 미생물에 의한 용존우라늄 제거 및 광물화 특성)

  • Oh, Jong-Min;Lee, Seung-Yeop;Baik, Min-Hoon;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2010
  • Removal and mineralization of dissolved uranium by bacteria in KURT (KAERI Underground Research Tunnel), Korea Atomic Energy Research Institute (KAERI) was investigated. Two different bacteria, IRB (iron-reducing bacteria) and SRB (sulfate-reducing bacteria) was used, and minerals formed by these bacteria were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Compared to uranyl ions, ferric ions were preferentially reduced by IRB, showing that there is no significant reduction and removal of uranium. However, uranium concentration considerably decreased by addition of Mn(II). Results show that a sulfide mineral such as mackinawite (FeS) is formed by SRB respiration through combination of Fe(II) and S without manganese sulfide formation. In the presence of Mn(II), however, uranium is removed effectively, suggesting that the sorption and incorporation of uranium could be affected by Mn(II) onto the sulide minerals.

Copper Mineralization at Haman-Gunbuk Mining District, Kyeongnam Area (경남(慶南) 함안(咸安)-군북지역(郡北地域)의 동광화작용(銅鑛化作用)에 관(關)한 연구(硏究))

  • Park, Hee-In;Choi, Suck-Won;Chang, Ho Wan;Chae, Dong-Hyeon
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.107-124
    • /
    • 1985
  • More than fifty copper veins are emplaced around late Cretaceous granitoid stock in Haman-Gunbuk district, southernmost part of Korea. These veins cut both late Cretaceous granitoids and hornfels of Jindong formation which is intruded by the granitoids. The paragenesis of veins is nearly the same, consisting of (1) an early vein stage in which most iron oxide minerals, tourmaline and other silitcate minerals were deposited, (2) a calcite and quartz with base·metal sulfide stage and (3) late vein lets of barren calcite stage. Fluid inclusion studies reveal highly systematic trends of salinity and temperature during mineralization. Ore fluids of early vein stage were complex NaCl-KCl rich brines. Salinities of polyphase inclusions in quartz and scapolite in thie stage reached up to 72 wt.% and gradually decreased to 10.5wt. % in closing stage. Homogenization temperatures of inclusions in the beginning of this stage were up to $490^{\circ}C$ and then declined steadly to $290^{\circ}C$ in the late stage. Salinities of fluid inclusions in quartz and calcite of base·metal sulfide stage were 37.4~5.7wt. % and homogenization temperatures range from $373^{\circ}C$ to $170^{\circ}C$. Intermittent boiling of early vein fluid is indicated by fluid inclusions in quartz. Potassic alteration of granodiorite adjacent to early vein seems to be related to early saline vein fluid. Fluid inclusion data of base-metal sulfide stage of this area reveal nearly the same range as those of Koseong copper mining district about 30km apart from this area.

  • PDF

Gold and Silver Mineralization in the Yonghwa Mine (용화광산(龍化鑛山)의 금은광화작용(金銀鑛化作用))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.107-129
    • /
    • 1991
  • The Yonghwa gold-silver deposits are emplaced along $N15^{\circ}{\sim}25^{\circ}W$ trending fissures in middle Cretaceous porphyritic granite or Precambrian Sobaegsan gneiss complex. The results of paragenetic studies suggest that vein filling can be subdivided into four identifiable stages; state I: the main sulfide stage, characterized by base-metal sulfide minerals, iron oxides and minor electrum, stage II: electrum stage, stage III: electrum and silver-bearing sulfosalts stage, stage IV: post ore stage of carbonates and quartz. The ore mineralogy suggests that depositional temperature of the formation of the gold and silver minerals are estimated as 200 to $250^{\circ}C$ and 140 to $180^{\circ}C$, respectively. Sulfur fugacity of the formation of the gold and silver minerals are estimated as $10^{-14.0}$ to $10^{-12.2}$ atm and $10^{-18.5}$ to $10^{-17.2}$ atm, respectively. A consideration of the pressure regime during ore deposition bases on the fluid inclusion evidence of boiling suggests lithostatic pressure of less than 180 bars. This range of pressure indicate that vein system lay at depth of 700m below the surface at the time during mineralization. Salinities of ore-bearing fluids range from 0.4 to 6.9 wt.% equivalent NaCl. The sulfur and carbon isotopic data reveal that these elements were probably derived from a deep-seated source. The ${\delta}^{18}O$ of the hydrothermal fluid was determined from ${\delta}^{18}O$ values of quartz and calcite. Oxygen and hydrogen isotopic studies reveal that meteoric water dominate over ore-bearing fluid.

  • PDF

Quantitative Analysis of Skarn Ore Using 3D Images of X-ray Computed Tomography (3차원 X-ray 단층 화상을 이용한 스카른 광석의 정량분석 연구)

  • Jeong, Mi-Hee;Cho, Sang-Ho;Jeong, Soo-Bok;Kim, Young-Hun;Park, Jai-Koo;Kaneko, Katsuhiko
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.211-217
    • /
    • 2010
  • A micro-focus X-ray computed tomography (CT) was employed to determine quantitative phase analysis of skarn Zn-Pb-Cu ore by nondestructive visualization of the internal mineral distribution of a skarn ore. The micro CT images of the ore were calibrated to remove beam hardening artifacts, and compared with its scanning electron microscope (SEM) images to set the threshold of CT number range covering sulfide ore minerals. The volume ratio of sulfide and gangue minerals was calculated 20.5% and 79.5%, respectively. The quantitative 3D X-ray CT could be applied to analyse the distribution of economic minerals and their recovery.

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

A Study of Hexavalent Chromium Reduction by Iron Sulfide (황화철에 의한 6가 크롬의 환원에 관한 연구)

  • Jo, Se-I;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.657-662
    • /
    • 2005
  • Iron sulfide(FeS) is significantly produced through both abiotic and biotic processes in natural sediments and pore waters. In this study, chromium(VI) reaction with iron sulfide at various initial concentrations and at pH values of 4 and 8 was conducted to better understand the interactions between Cr(VI) and Fe(II) species dissolved from iron sulfide in both the aqueous and solid phases. Also, the removal efficiency of iron sulfide was compared with zero valent iron and other iron bearing oxides such as ${\alpha}-Fe_2O_3$, ${\alpha}-FeOOH$ and $Fe_3O_4$. The Cr(VI) removal rate by iron sulfide was higher at pH 4 than at pH 8 because more dissolved Fe(II) existed at pH 4 than at pH 8. Chromium and iron(oxyhydroxide) could be identified on the iron sulfide surface with transmission microscopy imaging and energy dispersive spectroscopy. The removal capacity of iron sulfide was much higher than zero valent iron and other iron oxide minerals due to the synergic effect of hydrogen sulfide and ferrous iron.

Mineralogy of Low-Grade Uranium Ores in the Black Slate of the Ogcheon Group, Korea (옥천계(沃川系) 흑색(黑色)슬레이트내(內) 부존(賦存)하는 저품질(低品質) 우라늄광석(鑛石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Lee, Dong-Jin
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.133-146
    • /
    • 1986
  • Primary uraninite and secondary uranium minerals such as torbernite, metatorbernite, tyuyamunite, metatyuyamunite, autunite and metaautunite have been identified from various types of uranium ores. Uranium minerals occur as accessory minerals in both the primary and secondary ores. Low·grade uranium ores consist of various kinds of primary and secondary minerals. Major constituent minerals of primary uranium ores are graphite. quartz. Ba-feldspar and sericite/muscovite, and accessories are calcite, chlorite, fluorapatite, barite, diopside, sphene, rutile, biotite, laumontite, heulandite, pyrite, sphalerite and chalcopyrite, and secondary minerals consist of kaolinite, gypsum and goethite. Uraninite grains occur as microscopic very fine-grained anhedral to euhedral disseminated particles in the graphitic matrix, showing well·stratified or zonal distribution of uranium on auto-radiographs of low-grade uranium ores. Some uraninite grains are closely associated with very fine-grained pyrite aggregates, showing an elliptical form parallel to the schistosity. Some uraninite grains include extremely fine-grained pyrite particle. Sphalerite and pyrite are often associated with uraninite in graphite-fluorapatite nodule. The size of uraninite is $2{\mu}m$ to $20{\mu}m$ in diameter. Low-grade uranium ores are classified into 5 types on the basis of geometrical pattern of mineralization. They are massive, banded, nodular, quartz or sulfide veinlet-rich and cavity filling types. Well-developed alternation of uranium-rich and uranium-poor layers, concentric distribution of uranium in graphite-fluorapatite nodule and geopetal fabrics due to the load cast of the nodule suggest that the uranium was originally deposited syngenetically. Uraninite crystals might have been formed from organo-uranium complex during diagenesis and recrystallized by metamorphism. Secondary uranium minerals such as torbernite, tyuyamunite and autunite have been formed by supergene leaching of primary ores and subsequent crystallization in cavities.

  • PDF