• Title/Summary/Keyword: sulfate reduction

Search Result 363, Processing Time 0.034 seconds

Synthesis of 1-Benzyl-4-Iodomethyl-2-Azetidinone and Electrochemical Reduction on the Iodo Group (1-Benzyl-4-Iodomethyl-2-Azetidinone의 합성과 Iodo기에 대한 전기화학적 환원반응)

  • Kim Il Kwang;Lee Young Haeng;Lee Chai Ho;Chai Kyu Yun;Kim Yoon Geun
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.70-77
    • /
    • 1991
  • 1-Benzyl-4-iodomethyl-2-azetidinone(BIMA) was synthesized and its electrochemical reduction was investigated by direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The irreversible two electron transfer on reductive dehalogenation of iodo group proceeded to form 1-benzyl-4-methyl-2-azetidinone by EEC electrode reaction mechanism at the first reduction step(-1.35 volts vs. Ag-AgCl). The polarographic reduction waves separated into two reduction steps due to anionic surfactant (sodium lauryl sulfate) effects, while the waves were shifted to the positive potential as the concentration of cationic surfactant (cetyltrimethylammonium bromide) increased. Upon the basis of results on the product analysis and interpretation of polarogram with pH variable, EEC electrochemical reaction mechanism was suggested.

  • PDF

Sulfate Resistance of Alkali-Activated Materials Mortar (알칼리 활성화 결합재 활용 모르타르의 황산염 침식 저항성)

  • Park, Kwang-Min;Cho, Young-Keun;Lee, Bong-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • This paper presents an investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(0, 30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0) and initial curing temperatures($23^{\circ}C$ and $70^{\circ}C$). The tests involved immersions for a period of 6 months into 10% solutions of sodium sulfate and magnesium sulfate. The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, as higher GGBFS replace ratio or Ms shown higher compressive strengths on 28 days. In case of immersed in 10% sodium sulfate solution, the samples shows increase in long-term strength. However, for samples immersed in magnesium sulfate solutions, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$); the gypsum increased up to 6 months continuously.

Reduction of Azobenzene by Purified Bovine Liver Quinone Reductase

  • Kim, Kyung-Soon;Shin, Hae-Yong
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.321-325
    • /
    • 2000
  • Quinone reductase was purified to homogeneity from bovine liver by using ammonium sulfate fractionation, ionexchange chromatography, and gel filtration chromatography. The enzyme utilized either NADH or NADPH as the electron donor. The enzyme catalyzed the reduction of several quinones and other artificial electron acceptors. Furthermore, the enzyme catalyzed NAD(P)H-dependent reduction of azobenzene. The apparent Km for 1,4-benzoquinone and azobenzene was 1.64 mM and 0.524 mM, respectively. The reduction of azobenzene by quinone reductase was almost entirely inhibited by dicumarol or Cibacron blue 3GA, potent inhibitors of the mammalian quinone reductase. In the presence of 1.0${\mu}M$ Cibacron blue 3GA, azoreductase activity was lowered by 45%, and almost complete inhibition was seen above 2.0 ${\mu}M$ Cibacron blue 3GA.

  • PDF

A Study on the Kinetics of Copper Ions Reduction and Deposition Morphology with the Rotating Disk Electrode (RDE를 이용한 구리이온의 환원속도 및 전착형태에 관한 고찰)

  • Nam, Sang Cheol;Um, Sung Hyun;Lee, Choong Young;Tak, Yongsug;Nam, Chong Woo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.645-652
    • /
    • 1997
  • Electrochemical characteristics and kinetic parameters of copper ion reduction were investigated with a platinum rotating disk electrode (RDE) in a diffusion controlled region. Reduction of Cu(II) in sulfate had one-step two-xelectron process, while the reduction of Cu(II) in chloride solution was involved two one-electron processes. The transfer coefficient of Cu(II) in sulfate solution was lowest, and the transfer coefficient of Cu(I) in halide solutions had the value of nearly one. In chloride solutions, electrodeposition rate of Cu(II) was about one hundred times faster than Cu(I). Diffusion coefficient increased in the order of Cu(II) in chloride solution, Cu(I) in the iodide, bromide, chloride solution, Cu(II) in sulfate solution. The calculated ionic radii and activation energy for diffusion decreased in the same order as above. Morphological study on the copper electrodeposition indicated that the electrode surface became rougher as both concentration and reduction potential increases, and the roughness of the surface was analyzed with UV/VIS spectrophotometer.

  • PDF

Genesis and Mineralogical Characteristics of Acid Sulfate Soil in Gimhae Plain -I. Transformation of Pyrite and Jarosite (김해평야(金海平野)에 분포(分布)한 특이산성토(特異酸性土)의 생성(生成)과 광물학적(鑛物學的) 특성(特性) -I. Pyrite와 Jarosite의 생성(生成))

  • Jung, Pil-Kyun;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.3
    • /
    • pp.204-214
    • /
    • 1993
  • The purpose of this study was to elucidate the chemical changes and formation of sulfur minerals following reduction and subsequent oxidation of the acid sulfate soils derived from the fluvio-marine plains in Gimhae area. Changes in pH, Eh and water soluble $SO_4$, Fe, Al, K, na and Ca were determined in the soil under the reduced and oxidized conditions. These chemical properties were related to the formation of the pyrite and jarosite, the major sulfur minerals in the acid sulfate soils. On incubation, suspension pH tended to increase with decreaseing Eh in the reduction periods. Jarosite formation was favored by maintaining continuous low pH(below 4.0) and high Eh(above 400mV) during the oxidation periods, however, the conditions were not favorable for the soils with $Ca(OH)_2$. Water soluble K increased by reduction but decreased by oxidation, while the jarosite of the soil with $Ca(OH)_2$ was dissolved even under the oxidation conditon, resulting in rapid increase of water soluble K. The water soluble Ca decreased rapidly, indicating that gypsum was formed with $Ca(OH)_2$ during the oxidation periods. The formation of jarosite was favored by the oxidation condition, and hindered by the reduction condition. But the formation of pyrite was favored by reduction and hindered by oxidation. When the troll was treated with $Ca(OH)_2$, Jarosite was dissolved in both oxidized and reduced conditions.

  • PDF

Sulfate Reduction and Origin of Organic Matter in the Ulleung Basin, East Sea (동해 울릉분지에서의 황산염 환원작용과 유기물의 기원)

  • Park Myong-Ho;Kim Ji-Hoon;Ryu Byong-Jae;Kim Il-Soo;Lee Youngju;Chang Ho-Wan
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.335-346
    • /
    • 2005
  • In this study, core sediments and pore water were analysed to identify the origin of organic matter and Bas in late Quaternary sediments from the northwestern Ulleung Basin of the East Sea. C/N and C/S ratios in the sediments show that the organic matter in the study area originated predominantly from marine algae. However, the results of Rock-Eval pyrolysis indicate that the organic matter has an origin of the land-plant (Type III), locating in the immature stage. These different results might be due to the heavy oxidizing of the organic matter during sinking down to the seafloor or after deposition in the sediments. Concentration of sulfate in the pore water decreases gradually with core depth, while concentration of $CH_4$ increases gradually with core depth. This indicates that sulfate reduction and methanogenesis occurred actively in the sediments. Also, it is likely that the compositions of $CH_4$ are characterized as a more biogenic origin, mostly caused by microbial activity, rather than a thermogenic one.

Pretreatment of Feedstock with High Free Fatty Acid (고농도 유리지방산을 함유한 원료유지의 전처리)

  • Jeong, Gwi-Taek;Park, Don-Hee
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.418-421
    • /
    • 2006
  • Fatty acid methyl esters, also referred to as biodiesel, have been determined to have a great deal of potential as substitutes for petro-diesel. In order to enhance productivity in the biodiesel production process, feedstocks were previously recommended to be anhydrous, with a free fatty acid content of less than 0.5%. In this study, the effects of several catalysts, methanol molar ratio, catalyst amount, and reaction time on the reduction of free fatty acid level were studied with a simulated feedstock consisting of 20% oleic acid in rapeseed oil. Ferric sulfate was selected as the best catalyst. Increasing the catalyst amount and methanol molar ratio is very effective in decreasing the acid value of the simulated mixture. Our results may provide useful information with regard to the development of more economic and efficient free fatty acid removal system.

Feasibility of fermentative bio-hydrogen production from different organic wastes (다양한 유기성 폐자원에서 바이오 수소 생성 연구)

  • Hwang, Jae-Hoon;Choi, Jeong-A;Abou-Shanab, R.A.I.;Jeon, Byong-Hun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.506-510
    • /
    • 2009
  • The effects of various organic wastes on anaerobic fermentative hydrogen production were studied using enriched mixed microflora in batch tests. Rotten fruit, corn powder and organic wastewater enriched with sulfate (up to 1,000 mg/L) were used for experiments. Maximum hydrogen production (547.1 mL) was observed from rotten apple with initial substrate concentration of 132.2 g COD/L. The experimental result on sulfate enriched organic wastewater indicated that hydrogen production is not adversely influenced by relatively high sulfate concentration. Residual sulfate content remained at 96-98 % after 75 hours of reaction, which showed that no major sulfate reduction was occurred at pH 5.3-5.5 in the reactor. The volatile fatty acid (VFA) fractions produced during the reaction was in the order of butyrate > acetate > propionate in all experiments. The results of this study would be useful for controlling the conditions on fermentative hydrogen production using different feedstocks.

  • PDF

Analysis of Sulfate Concentration Reduction Using Enzyme Induced Carbonate Precipitation Technique (EICP 공법을 활용한 황산염 농도 저감 분석)

  • Kim, Junghoon;Kim, Daehyun;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.7-16
    • /
    • 2023
  • This study aimed to evaluate the sulfate removal capacity of the enzyme-induced carbonate precipitation (EICP) technique through the chemical precipitation of sulfate with calcium ions. The optimal EICP recipe was obtained to retain the excess calcium cations in the solution for the generation of a sufficient amount of calcium carbonate (CaCO3) mineral. The effect of gypsum precipitation on the EICP-treated sand specimen was investigated by measuring the shear wave velocity and by visual inspection via scanning electron microscopy. The EICP solution using soybean crude urease, as an alternative to laboratory-grade purified urease, exhibited a lower sulfate removal efficiency at a similar CaCO3 production rate compared with the optimal EICP recipe because of soybean impurities.