• Title/Summary/Keyword: sulfate deterioration factor(SDF)

Search Result 2, Processing Time 0.016 seconds

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

Sulfate Resistance of Cement Matrix Containing Limestone Powder

  • Moon Han-Young;Jung Ho-Seop;Lee Seung-Tae;Kim Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.433-440
    • /
    • 2004
  • In order to improve the performance of concrete, generally, modern cements often incorporate several mineral admixtures. In this study, the experimental included the flow value, air content of mortar containing limestone powder and length change and compressive strength of mortar specimen immersed in sulfate solutions. From the experimental results, the limestone powder cement matrices improved the physical properties and sulfate resistance of cement matrices at $10\%$ replacement ratio of limestone powder. The $30\%$ replacement ratio of limestone powder was significantly deteriorated in sodium sulfate solution. Irrespective of fineness levels of limestone powder, length change and SDF of mortar specimens with only $10\%$ replacement was much superior to the other replacements.