• Title/Summary/Keyword: sulfanilyl dipeptide

Search Result 2, Processing Time 0.013 seconds

Transport of Sulfanilic Acid via Microbial Dipeptide Transport System

  • Hwang, Se-Young;Ki, Mi-Ran;Cho, Suk-Young;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.315-318
    • /
    • 1995
  • Sulfanilic acid (4-aminobenzenesulfonic acid) alone is normally not permeant in bacteria but can be readily delivered via the microbial dipeptide transport system. A dipeptidyl derivative of this compound, L-phenylalanyl-L-2-sulfanilylglycine (PSG), prepared by attachment of its primary amino group to the phenylalanyl $\alpha$-glycine moiety, appeared to have a Km of 0.125 mM and a Vmax of 1.9 nmoles/ml/min ($A_{660}$, 1.0) in Escherichia coli. From competitive spectrophotometric analysis, it was found that the type of amino acids in both of the N- and C-terminals affected the kinetic power of dipeptides. The growth inhibitory effect of PSG was over 7 times more potent than that of the sulfanilic acid against E. coli, suggesting that this potential inhibition was presumably due to the increased hydrophobic nature of the sulfanilyl dipeptide.

  • PDF

Phenylalanyl-2-Sulfanilylglycine as Substrate for Leucine Aminopeptidase Assay

  • Hwang, Se-Young;Cho, Suk-Young;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.319-323
    • /
    • 1995
  • A chromogenic mimic of phenlyalanyl-dipeptide, L-phenylalanyl-L-2-sulfanilylglycine (PSG), was synthesized and examined for its usability in leucine aminopeptidase (LAP) assay. The enzyme activity was easily determined by measuring the amount of diazotized adduct of sulfanilic acid released upon hydrolysis of PSG ($\varepsilon^{420}$=18,000/M/cm). Under the experimental conditions employed, PSG showed a Km of 0.063 mM and a Kcat of 1683/min, assessable less than 0.1 $\mu$ g of LAP per milliliter. And the presence of aminopeptidase M (APM) was suggested to be negligible in LAP assay. This novel assay can circumvent the occasional yellow background in biological systems, i.e., serums, etc..

  • PDF