• Title/Summary/Keyword: suction stress

Search Result 139, Processing Time 0.028 seconds

Distribution of the Reynolds Stress Tensor inside Tip Leakage Vortex (익단 누설 와류내의 레이놀즈 응력 분포)

  • Lee, Gong-Hee;Park, Jong-Il;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.496-501
    • /
    • 2003
  • Reynolds averaged Wavier-Stokes simulations based on the Reynolds stress model was performed to investigated the effect of inlet flow angle on the distributions of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles ${\beta}=29.3^{\circ}$(design condition) and $36.5^{\circ}$(off-design condition) were considered. Stress tensor analysis, which transforms the Reynolds stress into the principal direction, was applied to show an anisotropy of the normal stresses. Whereas the anisotropy was highest in the region where the tip leakage vortex collides the suction side of the blade and tip leakage flow enters between blade tip of the pressure side and the endwall, it had the lowest value at the center of tip leakage vortex. It was also found that the magnitude of maximum shear stress at design condition was greater than that of off-design condition.

  • PDF

Modeling of Circulation for the East Sea Using Reduced Gravity Models (감쇠중력 모형을 이용한 동해의 순환모델링)

  • Choi, Byung-Ho;Wang, Ou
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.105-114
    • /
    • 1997
  • Wind is one of the main forcing contributing the circulation of the East Sea. By using 1.5-layer and 2.5-layer reduced gravity models, circulation in the East Sea is simulated. The bifurcation of the Tsushima Warm Current (TWC), the separation of East Korea Warm Current (EKWC) from the east coast of Korea, the Nearshore Branch of TWC, and the cyclonic gyres stretched from the East Korea Bay to the northern half of the East Sea are compared well with the schematic map. The features of the upper and the lower layer are very similar except for those of the central region. The Polar Front is the separating line of two different features. The main feature of northern part of the East Sea, north of the Polar Front is cyclonic gyres, which are composed of three cyclonic gyres in most seasons. North Korean Cold Current (NKCC) and Liman Cold Current (LCC) are the nearshore part of these cyclonic gyres. In the south of the Polar Front the current systems of both layers are anticyclonic in most seasons, except that those of the upper layer in winter and spring are not anticyclonic. Along the coast of Korea and Russia, the velocity structure is barotropic, while that of the central region is baroclinic. The effects due to the seasonal variations of wind stress and local Ekman suction/pumping are studied by imposing the domain with modified wind stress. which is spatial mean with temporal variations and temporal mean with spatial variations. It is found that the local Ekman suction/pumping due to wind stress curl is important to the formation of the cyclonic gyres in the western and the northwestern region of the East Sea.

  • PDF

Study on Flow and Stress Analysis of Gas Turbine Blade (가스 터빈 블레이드의 유동 및 응력 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2011
  • Turbine blades operate under high temperature and pressure. The influence changes according to its width and angle. Thermal stress and pressure are important factors to analyze the stress distribution. The purpose of this study is to investigate the effects of loads on the gas turbine blade using thermal stress analysis. These analysis results show the gas fluid flow with a high pressure around the surface of blade. Gas temperature is related to the pressure of flow around the blade. The stress concentration around blade is shown and the concentration is due to the difference between suction side and pressure side of combustion gas.

Shear infiltration and constant water content tests on unsaturated soils

  • Rasool, Ali Murtaza;Aziz, Mubashir
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • A series of element tests with different drainage conditions and strain rates were performed on compacted unsaturated non-plastic silt in unconfined conditions. Soil samples were compacted at water contents from dry to wet of optimum with the degree of saturation varying from 24 to 59.5% while maintaining the degree of compaction at 80%. The tests performed were shear infiltration tests in which specimens had constant net confining pressure, pore air pressure was kept drained and constant, just before the shear process pore water pressure was increased (and kept constant afterwards) to decrease matric suction and to start water infiltration. In constant water content tests, specimens had constant net confining pressure, pore air pressure was kept drained and constant whereas pore water pressure was kept undrained. As a result, the matric suction varied with increase in axial strain throughout the shearing process. In both cases, maximum shear strength was obtained for specimens prepared on dry side of optimum moisture content. Moreover, the gradient of stress path was not affected under different strain rates whereas the intercept of failure was changed due to the drainage conditions implied in this study.

Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump (양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구)

  • An, Young-Joon;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

Foundation Types of Fixed Offshore Wind Turbine

  • Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.74-85
    • /
    • 2024
  • Offshore wind turbines are supported by various foundations, each with its considerations in design and construction. Gravity, monopile, and suction bucket foundations encounter geotechnical issues, while jacket and tripod foundations face fatigue problems. Considering this, a gravity foundation based on a steel skirt was developed, and a monopile foundation was analyzed for Pile-Soil Interaction using the p-y curve and 3D finite element method (3D FEM). In addition, for suction bucket foundations, the effects of lateral and vertical loads were analyzed using 3D FEM and centrifuge tests. Fatigue analysis for jacket and tripod foundations was conducted using a hotspot stress approach. Some hybrid foundations and shape optimization techniques that change the shape to complement the problems of each foundation described above were assessed. Hybrid foundations could increase lateral resistance compared to existing foundations because of the combined appendages, and optimization techniques could reduce costs by maximizing the efficiency of the structure or by reducing costs and weight. This paper presents the characteristics and research directions of the foundation through various studies on the foundation. In addition, the optimal design method is presented by explaining the problems of the foundation and suggesting ways to supplement them.

Anisotropic Modelling of Partially Saturated Soil Behaviour by Means of ALTERNAT (ALTERNAT 구성모델을 이용한 불포화토 거동의 비등방 모형화)

  • Kwon, Hee-Cheol;Lee, Cheo-Keun;Heo, Yol
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.71-82
    • /
    • 2001
  • 불포화토에 있어서 함수상태는 지반이 건조할수록 수축하고 습윤상태로 진행할수록 파괴에 이르게 하는 추가적인 입자간 응력을 발생시키며, 이러한 간극수와 흙입자 사이에 발생하는 현상을 규명하기 위해서는 정확한 모형화가 필요하다. 흙입자와 간극수 사이의 상호작용에서 흡입유발 유효응력(suction-induced effective stress)을 규명하기 위해 정규모형(regular packing)과 임의모형(random packing)이 적용될 수 있다. 최근의 연구결과에 따르면 흙은 흡입유발 유효응력과 밀접한 관계가 있으며, 흙의 비등방텐서(anisotropic tensor)를 구하기 위해 적용된 ALTERNAT 모델을 이용하여 구조텐서(fabric tensor)를 개략적으로 정의할 수 있다. Thornton의 임의모형 시뮬레이션은 구조텐서에 상응하는 파괴응력 상태를 포함하고 있으며, 미소역학 시뮬레이션을 통하여 구조텐서를 구하였다. 본 연구에서는 상기에 언급된 구형의 흙입자 모형에 대한 이론적 고찰이 수행되었고, ALTERNAT 모델을 적용한 간단한 비등방텐서의 결과를 구조텐서와 비교하였다. 본 연구결과 비등방텐서는 미소역학 시뮬레이션에 의한 구조텐서에 비해 약 20~40%정도 큰 값을 나타내었다.

  • PDF

Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Soil( II) - Development and application of constitutive model - (불포화토의 거동예측을 위한 구성식 개발(II) -구성식의 개발 및 적용-)

  • 송창섭;장병욱
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.81-89
    • /
    • 1995
  • The aim of the work described in this paper is to develope a constitutive model for the prediction of an unsaturated Soil and to confirm the application of the model, which is composed of the elastic and plastic part in consideration of the matric suction and the net mean stress. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated. And the application of the model to silty sands is con- firmed by the comparison between test and predicted results. During drying-wetting and loading-unloading processes for isotropic states, the agreement between predicted and test results are satisfactory. And predicted deviator stresses are well agreed with test results in shearing process. Overall acceptable predictions are reproduced in high confining pressure. Usefulness of the model is confirmed for the unsat- urated soil except volumetric strain, which is not well agreed with the test results due to deficiency of dilatancy of the model in low confining pressure. It is, therefore, recom- mended to study the behavior of dilatancy for an unsaturated soil.

  • PDF

Influence of net normal stresses on the shear strength of unsaturated residual soils (풍화잔적토의 불포화전단강도에 미치는 순연직응력의 영향)

  • 성상규;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.139-146
    • /
    • 2002
  • The characteristics and prediction model for the shear strength of unsaturated residual soils was studied. In order to investigate the influence of the net normal stress on the shear strength, unsaturated triaxial tests and SWCC tests were carried out varying the net normal stress, and the experimental data for unsaturated shear strength tests were compared with predicted shear strength envelopes using existing prediction models. It was shown that the soil - water characteristic curve and the shear strength of the unsaturated soil varied with the change of the net normal stress. Therefore, to achieve a truly descriptive shear strength envelope for unsaturated soils, tile effect of the normal stress on the contribution of matric suction to the shear strength has to be taken into consideration. In this paper, a modified prediction model for the unsaturated shear strength was proposed.

  • PDF

Analysis of Efficiency of Suction Board Drain Method by Step Vacuum Pressure (단계석션압 조건에 따른 석션보드드레인 공법의 효율 분석)

  • Kim, Ki-Nyun;Han, Sang-Jae;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.321-329
    • /
    • 2008
  • In this study, a series of column test as a way in order to make up for the weakness point of the conventional acceleration method were conducted to both propose the suction board drain method and grapes the specific improvement character of this method as a result of a sort of plastic drain board and a phase of vacuum pressure conditions. On this occasion, the study focused on computing the effective factors of the fittest Suction board drain method affected by each condition through confirming the settlement generated during the test, the water content reduction and stress increase effect occurred arising from the test, and the ratio of consolidation related to the improvement period. In accordance with the shape of core and that whether the core is attached to the filter(pocket or adhesion), the castle type of adhesion and the column type of pocket are more efficient than the others as a consequence of the test to find out the improvement effect depending on each drainage such as a castle type, coil type, harmonica type, column type of pocket and a castle of the adhesion. In case of the step suction pressure, the shorter the period of $-0.8\;kg/cm^2$ as a final step of the suction pressure is, the better the improvement is. In addition, the correlation between degree of consolidation per each suction pressure level and duration of application was drawn as a curve and the point of inflection on this curve was provided to determine the duration period to maximize the consolidation.