• Title/Summary/Keyword: successive selection

Search Result 66, Processing Time 0.023 seconds

Transmit Antenna Selection for Spatial Multiplexing with Per Antenna Rate Control and Successive Interference Cancellation (순차적인 간섭제거를 사용하는 공간 다중화 전송 MIMO 시스템의 전송 안테나 선택 방법에 관한 연구)

  • Mun Cheol;Jung Chang-Kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.560-569
    • /
    • 2005
  • This paper proposes an algorithm for transmit antenna selection in a multi-input multi-output(MIMO) spatial multiplexing system with per antenna rate control(PARC) and an ordered successive interference cancellation (OSIC) receiver. The active antenna subset is determined at the receiver and conveyed to the transmitter using feedback information on transmission rate per antenna. We propose a serial decision procedure consisting of a successive process that tests whether antenna selection gain exists when the antenna with the lowest pre-processing signal to interference and noise ratio(SINR) is discarded at each stage. Furthermore, we show that 'reverse detection ordering', whereby the signal with the lowest SINR is decoded at each stage of successive decoding, widens the disparities among fractions of the whole capacity allocated to each individual antenna and thus maximizes a gain of antenna selection. Numerical results show that the proposed reverse detection ordering based serial antenna selection approaches the closed-loop MIMO capacity and that it induces a negligible capacity loss compared with the heuristic selection strategy even with considerably reduced complexity.

Regression Estimators with Unequal Selection Probabilities on Two Successive Occasions

  • Kim, Kyu-Seong
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.25-37
    • /
    • 1996
  • In this paper, we propose regression estimators based on a partial replacement sampling scheme over two successive occasions and derive the minimum variances of them. PPSWR, RHC, $\pi$PS and PPSWOR schemes are considered to select unequal probability samples on two occasions. Simulation results over four populations are given for comparison of composite estimators and regression estimators.

  • PDF

A Novel Relay Selection Technique with Decoded Information in Buffer-Aided Successive Relaying Systems (버퍼기반 연쇄적 중계시스템에서 복호 정보를 활용한 중계기 선택 알고리즘)

  • Lee, Byeong Su;Ban, Tae Won;Jung, Bang Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.51-53
    • /
    • 2015
  • In this paper, we propose a new relay selection technique which utilizes interference cancellation with decoding information at multiple relays for buffer-aided successive relaying systems. The transmitting relay is selected if its own transmission to the destination is successful and the number of relays which can successfully decode the data from the source is the maximum at the same time. Simulation results show that the proposed relay selection technique significantly outperforms the conventional relay selection scheme in terms of outage probability.

  • PDF

Design of the Successive Selection Encoder by the Logical Effort for High Flash Speed ADC's (고속 플래시 AD 변환기를 위한 Successive Selection Encoder의 Logical Effort에 의한 설계)

  • Lee Kijun;Choi Kyusun;Kim Byung-soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.37-44
    • /
    • 2005
  • In this paper, a new type of the TC-to-BC encoder for high speed flash ADC's, called the Successive Selection Encoder (SSE), is proposed. In contrast to the conventional fat tree encoder based on OR operations, the W- outputs, in the new design, are obtained directly from TC inputs through simple MUX operations. The detailed structure of the SSE has been determined systematically by the method of the logical effort and the simulation oil Hynix 0.25um process. The theoretical and experimental results show that (1) it is not required to generate one-out-of-n signals, (2) the number of gates is reduced by the factor of 1/3, and (3) the speed is improved more than 2-times, compared to the fat tree encoder. It is speculated that the SSE proposed in this study is an effective solution for bottleneck problems in high speed ADCs.

Efficient User Selection Algorithms for Multiuser MIMO Systems with Zero-Forcing Dirty Paper Coding

  • Wang, Youxiang;Hur, Soo-Jung;Park, Yong-Wan;Choi, Jeong-Hee
    • Journal of Communications and Networks
    • /
    • v.13 no.3
    • /
    • pp.232-239
    • /
    • 2011
  • This paper investigates the user selection problem of successive zero-forcing precoded multiuser multiple-input multiple-output (MU-MIMO) downlink systems, in which the base station and mobile receivers are equipped with multiple antennas. Assuming full knowledge of the channel state information at the transmitter, dirty paper coding (DPC) is an optimal precoding strategy, but practical implementation is difficult because of its excessive complexity. As a suboptimal DPC solution, successive zero-forcing DPC (SZF-DPC) was recently proposed; it employs partial interference cancellation at the transmitter with dirty paper encoding. Because of a dimensionality constraint, the base station may select a subset of users to serve in order to maximize the total throughput. The exhaustive search algorithm is optimal; however, its computational complexity is prohibitive. In this paper, we develop two low-complexity user scheduling algorithms to maximize the sum rate capacity of MU-MIMO systems with SZF-DPC. Both algorithms add one user at a time. The first algorithm selects the user with the maximum product of the maximum column norm and maximum eigenvalue. The second algorithm selects the user with the maximum product of the minimum column norm and minimum eigenvalue. Simulation results demonstrate that the second algorithm achieves a performance similar to that of a previously proposed capacity-based selection algorithm at a high signal-to-noise (SNR), and the first algorithm achieves performance very similar to that of a capacity-based algorithm at a low SNR, but both do so with much lower complexity.

Optimal Measurement System Design by Using Band Matrix (밴드행열을 이용한 최적측정점선정에 관한 연구)

  • Song, Kyung-Bin;Choi, Sang-Bong;Moon, Toung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.133-136
    • /
    • 1987
  • This paper presents a new algorithm of optimal measurement system by using band matrix characteristic respectively for state estimation. A performance index of measurement system is established to reflect relation among measurement sets, probability of measurement failure and cost of individual meter installation. Selection ranking in the candidates of measurement sets is composed to guarantee the observability for any any single meter outage. Performance index sensitivity is introduced and recursive formula which based on the matrix inversion lemma used for selection. The proposed algorithm is composed of successive addition algorithm, successive elimination algorithm and combinatorial algorithm. The band matrix characteristic could save in memory requirements and calculate the performance index faster than earlier.

  • PDF

Joint Antenna Selection and Multicast Precoding in Spatial Modulation Systems

  • Wei Liu;Xinxin Ma;Haoting Yan;Zhongnian Li;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3204-3217
    • /
    • 2023
  • In this paper, the downlink of the multicast based spatial modulation systems is investigated. Specifically, physical layer multicasting is introduced to increase the number of access users and to improve the communication rate of the spatial modulation system in which only single radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) of the multicast based spatial modulation system, a joint optimizing algorithm of antenna selection and multicast precoding is proposed. Firstly, the joint optimization is transformed into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel iterative algorithm based on the idea of branch and bound is proposed to obtain the quasioptimal solution. Furthermore, in order to balance the performance and time complexity, a low-complexity deflation algorithm based on the successive convex approximation is proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm under the same BER accuracy conditions.

Parameter Optimization of a Micro-Static Mixer Using Successive Response Surface Method (순차적 반응표면법을 이용한 마이크로 정적 믹서의 최적설계)

  • Han, Seog-Young;Maeng, Joo-Sung;Kim, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1314-1319
    • /
    • 2004
  • In this study, parameter optimization of micro-static mixer with a cantilever beam was accomplished for maximizing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

Job Route Selection Expert System for Workload Balancing in Flexible Flow Line (유연생산라인의 부하평준화를 위한 작업흐름선택 전문가시스템)

  • 함호상;한성배
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.1
    • /
    • pp.93-107
    • /
    • 1996
  • A flexible flow line(FFL) consists of several groups of identical machines. All work-orders flow along the same path through successive machine groups. Thus, we emphasized the balancing of workloads between machine groups in order to maximize total productivity. On the other hand, many different types of work-orders, in varying batch or lot sizes, are produced simultaneously. The mix of work-orders, their lot sizes, and the sequence in which they are produced affect the amount of workload. However, the work-orders and their lot sizes are prefixed and cannot be changed. Because of these reasons, we have developed an optimal route selection model using heuristic search and Min-Max algorithm for balancing the workload between machine groups in the FFL.

  • PDF

Optimal Variable Selection in a Thermal Error Model for Real Time Error Compensation (실시간 오차 보정을 위한 열변형 오차 모델의 최적 변수 선택)

  • Hwang, Seok-Hyun;Lee, Jin-Hyeon;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.215-221
    • /
    • 1999
  • The object of the thermal error compensation system in machine tools is improving the accuracy of a machine tool through real time error compensation. The accuracy of the machine tool totally depends on the accuracy of thermal error model. A thermal error model can be obtained by appropriate combination of temperature variables. The proposed method for optimal variable selection in the thermal error model is based on correlation grouping and successive regression analysis. Collinearity matter is improved with the correlation grouping and the judgment function which minimizes residual mean square is used. The linear model is more robust against measurement noises than an engineering judgement model that includes the higher order terms of variables. The proposed method is more effective for the applications in real time error compensation because of the reduction in computational time, sufficient model accuracy, and the robustness.

  • PDF