• Title/Summary/Keyword: successive alkalinity producing system

Search Result 7, Processing Time 0.018 seconds

A Study on Treatment of Acid Mine Drainage Using an Cow Manure and Spent Oak (우분과 참나무 폐목을 이용한 산성광산배수의 처리에 관한 연구)

  • An, Jong-Man;Lee, Hyun-Ju;Kim, Ki-Ho;Lee, Yong-Bok;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.52-60
    • /
    • 2011
  • Although facilities for the passive treatment of AMD (Acid Mine Drainage) are currently operating in Korea, their removal efficiency for heavy metals is relatively low in average (only 80%). Passive treatment system is composed of oxidation tank, SAPS (Successive Alkalinity Producing System), and wetland. In the treatment system adopted in korea, SAPS (Successive Alkalinity Producing System) plays a major role to remove about 65% of heavy metals through a precipitation. However, the efficiency of SAPS is limited due to the use of mushroom compost (MC) as a organic material and of limestone as a neutralizer. Therefore, this research was performed to search for alternative organic materials through the field test. We tested two types of mixed organic materials: 1) cow manure and spent oak (herein, CO) and 2) cow manure and sawdust (herein, CS). For comparison mushroom compost (herein, MC) was also tested. The result showed that the average Fe removal efficiency was 91.38% with CO, 85.19% with CS, and 91.58% with MC. Thus, CO can be effectively used as an alternative of MC in the SAPS system for heavy metals removal.

Evaluation of Cu Removal from Mine Water in Passive Treatment Methods : Field Pilot Experiments (자연정화 기반의 현장 파일럿 실험을 통한 광산배수 구리 정화효율 평가)

  • Oh, Youn Soo;Park, Hyun Sung;Kim, Dong Kwan;Lee, Jin Soo;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.235-244
    • /
    • 2020
  • Copper (Cu), one of the main contaminants in the mine drainage from the closed mine area, needs to be removed before exposed to environment because of its toxicity even in the low concentration. In this study, passive treatment based field pilot experiments using limestone and compost media were conducted during 9 months for enhancing Cu removal efficiency of the mine water treatment facility of S mine located in Goseong, Gyeongsangnam-do in South Korea. The pH increase and Cu removal efficiency showed high value at Successive Alkalinity Producing System ( SAPS) > Reducing and Alkalinity Producing System (RAPS) > limestone reactor in a sequence. The compost media using in SAPS and RAPS contributed to raise pH by organic material decomposition with generating alkalinity, thus, Cu removal efficiency increased. Also, experimental results showed that Cu removal efficiency was proportional to pH increase, meaning that pH increase is the main mechanism for Cu removal. Moreover, Sulfate Reduction Bacteria (SRB) was identified to be most activated in SAPS. It is inferred that the sulfate reduction reaction also contributed to Cu removal. This study has the site significance in that the experiments were conducted at the place where the mine water generates. In the future, the results will be useful to select the more effective reactive media used in the treatment facility, which is most appropriate to remediate mine water from the S mine.

폐탄광 부근 지하수의 오염에 관한 연구

  • 지상우;고주인;유상희;전용원;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.90-93
    • /
    • 2003
  • Sampling of waters from each stage of treatment system, SAPS (Successive Alkalinity Producing System), and spring water near the Hanchang coal mine of Kangwon. Province were carried out periodically and analyzed to evaluate the source and possible path of groundwater contamination by acid mine drainage(AMD). Chemical and sulfur isotope compositions showed that spring water was affected by seepage from mine tailings, and seepage of stonewall, a part of treatment system, was affected by both seepage from mine tailings and mine adit drainage. Through the treatment system no appreciable decrease of sulfur content was identified. And almost similar sulfur isotope compositions of water from each stage of the treatment system may suggest incomplete or very poor sulfate reduction by sulfate reducing bacteria.

  • PDF

The Contamination of Groundwater by Acid Mine Drainage in the Vicinity of the Hanchang Coal Mine and the Efficiency of the Passive Treatment System (산성광산배수에 의한 한창탄광 부근 지하수의 오염과 자연정화처리시설 효율에 관한 연구)

  • 지상우;김선준
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.9-18
    • /
    • 2003
  • Sampling of waters from each stage of treatment system (Successive Alkalinity Producing System; SAPS), tailings seepage, and spring near the Hanchang coal mine of Kangwon Province were carried out seasonally and analyzed to evaluate the source and possible path of groundwater contamination by acid mine drainage (AM). Sulfur isotope compositions were measured to identify the origin of groundwater contaminations and the sulfate reduction processes in the SAPS. Low pH and high metal concentration of spring water indicates possibility of the groundwater contamination by AMD. Removal efficiency of acidity of the SAPS was 18.17 g/$\textrm{m}^2$/day on an average and the metal removal efficiency was almost 100%, which was higher than those of other treatment systems. However, no appreciable decrease of sulfur content and almost similar sulfur isotope compositions of water from each stage of the treatment system may suggest incomplete or very poor sulfate reduction by sulfate reducing bacteria. Chemical and sulfur isotope compositions showed that spring water was contaminated by seepage from mine tailings. And seepage of stonewall, a part of treatment system was affected by both tailings seepage and mine adit drainage. In this study site, the treatment system was constructed for the only AMD from mine adit not for tailings seepages, which resulted in the groundwater contamination from tailing seepages. Similar situation is expected in other abandoned coal mine areas.

Use of Light Emitting Diode for Enhanced Activity of Sulfate Reducing Bacteria in Mine Drainage Treatment Process Under Extreme Cold (혹한기 광산배수 처리 공정 내 황산염 환원 박테리아의 활성 증진을 위한 발광다이오드의 이용 제안)

  • Choi, Yoojin;Choi, Yeon Woo;Lee, An-na;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.251-256
    • /
    • 2017
  • This study presents measures to enhance the efficiency of Successive Alkalinity Producing Systems(SAPS), a natural biological purification method that prevents environmental pollution arising from the release of Acid Mine Drainage(AMD) from abandoned mines into rivers and groundwater. The treatment of AMD using SAPS is based on biological processing technology that mostly involves sulfate reducing bacteria(SRB). It has been proven effective in real-world applications, and has been employed in various projects on the purification of AMD. However, seasonal decrease in temperature leads to a deterioration in the efficiency of the process because sulfate-reducing activity is almost non-existent during cold winters and early spring even if SRB is able to survive. Against this backdrop, this study presents measures to enhance the activity of the SRB of the organic layer by integrating light emitting diode(LED)s in SAPS and to maintain the active temperature using LEDs in cold winters. Given that mine drainage facilities are located in areas where power cannot be easily supplied, solar cell modules are proposed as the main power source for LEDs. By conducting further research based on the present study, it will be possible to enhance the efficiency of AMD treatment under extreme cold weather using solar energy and LEDs, which will serve as an environmentally-friendly solution in line with the era of green growth.

An Overview of Coal Mine Drainage Treatment (석탄광의 광산배수처리기술 현황 및 전망)

  • 정영욱
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • This study was undertaken to summarize of the efficiencies of the passive treatment system and suggest future studies for the solution of mine drainage problem. Flow rates of mine drainage from the abandoned coal mines are about 80,000 ton/day. Contaminated mine drainages over about 50 ton/day of flow rate were treated by passive treatment facilities such as Successive Alkalinity Producing Systems(SAPS), oxidation pond and oxic wetland. Chemical analysis for 13 passive coal mine treatment facilities showed that SAPS was the core of treatment facilities because the variation of Fe removal rates was relatively smaller than any other processes and re-leaching of Fe was not measured. The performance and life of SAPS depended on decrease in permeability and retention time due to accumulation of sludge. It is inferred that upgrade of design of the passive treatment system and in-situ treatment using underground void will be necessary for the amelioration of the mine drainage with high metal loading rates.

Evaluation of Purification Efficiency of Passive Treatment Systems for Acid Mine Drainage and Characterization of Precipitates in Ilwal Coal Mine (일월탄광에서 유출되는 산성광산배수 자연정화시설의 정화 효율 평가 및 침전물의 특성연구)

  • Ryu, Chung Seok;Kim, Yeong Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • Artificial precipitation ponds, consisting of three steps of oxidation pond, successive alkalinity producing system (SAPS) and swamp, were constructed for the treatment of the acid mine drainage from the Iwal coal mine. The efficacies of the passive treatment system in terms of neutralization of mine water and removal of dissolved ions were evaluated by the chemical analyses of the water samples. Mine water in the mine adits was acidic, showing the pH value of 2.28-2.42 but the value increased rapidly to 6.17-6.53 in the Oxidation pond. The purification efficiencies for the removal of Al and Fe were 100%, whereas those of $SO_4$, Mg, Ca, and Mn were relatively low of 50%, 40%, 24%, and 59%, respectively. These results indicate a need for application of additional remediation techniques in the passive treatment systems. The precipitates that formed at the bottom of the mine water channels were mainly schwertmannite ($Fe_8O_8(OH)_6SO_4$) and those in the leachate water were 2-line ferrihydrite ($Fe_2O_3{cdot}0.5H_2O$).