• Title/Summary/Keyword: subwatershed

Search Result 62, Processing Time 0.025 seconds

Analysis of SWAT Simulated Errors with the Use of MOE Land Cover Data (환경부 토지피복도 사용여부에 따른 예측 SWAT 오류 평가)

  • Heo, Sung-Gu;Kim, Nam-Won;Yoo, Dong-Sun;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.194-198
    • /
    • 2008
  • Significant soil erosion and water quality degradation issues are occurring at highland agricultural areas of Kangwon province because of agronomic and topographical specialities of the region. Thus spatial and temporal modeling techniques are often utilized to analyze soil erosion and sediment behaviors at watershed scale. The Soil and Water Assessment Tool (SWAT) model is one of the watershed scale models that have been widely used for these ends in Korea. In most cases, the SWAT users tend to use the readily available input dataset, such as the Ministry of Environment (MOE) land cover data ignoring temporal and spatial changes in land cover. Spatial and temporal resolutions of the MOE land cover data are not good enough to reflect field condition for accurate assesment of soil erosion and sediment behaviors. Especially accelerated soil erosion is occurring from agricultural fields, which is sometimes not possible to identify with low-resolution MOD land cover data. Thus new land cover data is prepared with cadastral map and high spatial resolution images of the Doam-dam watershed. The SWAT model was calibrated and validated with this land cover data. The EI values were 0.79 and 0.85 for streamflow calibration and validation, respectively. The EI were 0.79 and 0.86 for sediment calibration and validation, respectively. These EI values were greater than those with MOE land cover data. With newly prepared land cover dataset for the Doam-dam watershed, the SWAT model better predicts hydrologic and sediment behaviors. The number of HRUs with new land cover data increased by 70.2% compared with that with the MOE land cover, indicating better representation of small-sized agricultural field boundaries. The SWAT estimated annual average sediment yield with the MOE land cover data was 61.8 ton/ha/year for the Doam-dam watershed, while 36.2 ton/ha/year (70.7% difference) of annual sediment yield with new land cover data. Especially the most significant difference in estimated sediment yield was 548.0% for the subwatershed #2 (165.9 ton/ha/year with the MOE land cover data and 25.6 ton/ha/year with new land cover data developed in this study). The results obtained in this study implies that the use of MOE land cover data in SWAT sediment simulation for the Doam-dam watershed could results in 70.7% differences in overall sediment estimation and incorrect identification of sediment hot spot areas (such as subwatershed #2) for effective sediment management. Therefore it is recommended that one needs to carefully validate land cover for the study watershed for accurate hydrologic and sediment simulation with the SWAT model.

  • PDF

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Effect of Sampling Frequency for the Storm Runoff on BOD, T-P Loads Estimation of the Mixed Landuse Watershed (강우-유출 채수간격이 복합지목 유역의 BOD, T-P 부하량 산정에 미치는 영향)

  • Park, Hyunkyu;Beom, Jina;Choi, Dongho;Jung, Jaewoon;Jeung, Minhyuk;Kim, Youngsuk;Choi, Yujin;Jo, Youngjun;Yoon, Kwangsik
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.314-321
    • /
    • 2018
  • In order to quantify nonpoint source pollution, it was proposed to sample at regular intervals of 1 hour for the first 24 hours of storm runoff process by National Institute of Environmental Research for the mixed landuse watershed. However, high frequency sampling requires intensive laboratory analysis and labor costs. In order to investigate the effect of longer sampling interval on the load estimation compared to the 1 hour sampling method, analysis was conducted using monitoring data from rural subwatershed, urban subwatershed, and outlet of the Pungyeongjeongcheon watershed. Statistical analysis revealed that mean of load estimation was not significantly different up to 4 hour sampling frequency. However, 3 hour sampling interval was found to be appropriate for the BOD and TP when it is judged that 10% or less of the difference in loading amount between the 1 hour and other sampling interval is reasonable. The results of this study can be used to conduct an effective monitoring system.

A study on the selection of priority management watershed for the restoration of water cycle (물순환 회복을 위한 우선관리유역 선정 방안에 대한 연구)

  • Kim, Jaemoon;Baek, Jongseok;Park, Jaerock;Park, Byungwoo;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.749-759
    • /
    • 2022
  • The paradigm of water cycle management in the watershed is changing due to the increase in abnormal climate phenomena caused by climate change and the increase in impervious area due to urbanization. Research is continuously underway based on Low Impact Development technology that can suppress water cycle distortion. In this study, factors that can reflect water cycle distortion were selected before applying LID, and the PSR index for each 148 watershed was calculated for the the Nakdonggang River basin. As of 1975, the PSR index is calculated by calculating the pressure index P, which represents the rate of change in impervious surface area to 2019, the phenomenon index S, which represents the rate of change in water cycle for each subwatershed, and the Low Impact Development area countermeasure index R. The lower PSR index value, the higher the priority management watershed, and the water cycle recovery priority management watershed was calculated in the order of 1, 2, 87, 90, 91, and 147. It is expected that the efficient application of low-impact development factors in accordance with the order of priority management of water cycle by subwatershed in the large area will contribute to the recovery of water cycle distortion.

Estiamtion of Groundwater Recharge Rate Using the NRCS-CN and the Baseflow Separation Methods (NRCS-CN방법과 기저유출 분리법을 이용한 지하수함양률 산정)

  • Bae Sang-Keun;Kim Yong-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.253-260
    • /
    • 2006
  • Groundwater recharge from precipitation is affected by the infiltration from ground surface and the movement of soil water. Groundwater recharge is directly related to the groundwater amount and flow in aquifers, and baseflow to rivers. Determining groundwater recharge rate for a given watershed is a prerequisite to estimate sustainable groundwater resources. The estimation of groundwater recharge rate were carried out for three subwatersheds in the Wicheon watershed and two subwatersheds in the Pyungchang River basin and for the period 1990-2000, using the NRCS-CN method and the baseflow separation method. The recharge rate estimates were compared to each other. The result of estimation by the NRCS-CN method shows the average annual recharge rate 15.4-17.0% in the Wicheon watershed and 26.4-26.8% in the Pyungchang River basin. The average annual recharge rates calculated by the baseflow separation method ranged 15.1-21.1% in the W icheon watershed, and 25.2-33.4% in the Pyungchang River basin. The average annual recharge rates calculated by the NRCS-CN method is less variable than the baseflow separation method. However, the average annual recharge rates obtained from the two methods are not very different, except NO. 6 subwatershed in Pyungchang River basin.

Modification of TOPMODEL Considering Spatial Connectivity of Saturated Area (공간적 포화면적의 공간적 연결을 고려한 TOPMODEL의 개선과 적용)

  • Kim, Sang-Hyeon;Kim, Gyeong-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.515-524
    • /
    • 1999
  • A methodology to resolve a TOPMODEL problem has been suggested, which is associated with the spatial distribution of soil moisture behaviour in a runoff mechanism. A procedure to integrate the spatial information of saturation deficit in the TOPMODEL reflects the connectivity of saturated area in a watershed. The developed algorithm includes an improved basis in tracing the runoff path without increasing the number of parameters. The performance of the developed algorithm has been tested to an upland subwatershed, namely Dongok, which is the IHP watershed located at Wichon, Korea. Comparing with the original statistical version of the TOPMODEL, it has been found that the suggested algorithm can relax an overestimation of peak rate in the runoff simulation.

  • PDF

An Analysis of Flood Mitigation Effect Applying to LID in Mokgamcheon Watershed using SWMM Model (SWMM 모형을 이용한 목감천 유역의 LID 시설 적용 홍수저감효과 분석)

  • Jang, Yeongsun;Mun, Sungho;Yang, Sunglin
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: In this study, flood mitigation effect of drainage asphalt concrete pavement were analyzed by a SWMM 5.0 program in order to evaluate the low impact development (LID) based on the drainage asphalt concrete pavements. METHODS: In order to determine the porosity parameters of drainage asphalt concretes, the specimen mixtures were manufactured using the conditions presented in the previous study. The numerical simulation was conducted using the SWMM 5.0 program considering the flood mitigation effect of drainage asphalt concrete pavements. The effect of flood reduction can be observed when drainage asphalt concrete pavements were applied to Mokgamcheon watershed. The flood mitigation effect analysis of Mokgamcheon watershed as well as continuous simulation of subwatershed runoff were performed through this study. RESULTS : The analysis of drainage asphalt concrete pavements was carried out for evaluating the effect on runoff, resulting in: the peak flow decreases up to 1.26~9.53% after drainage asphalt concrete pavements applied in the SWMM 5.0 program furthermore, the discharge decreases up to 0.55~4.11%. CONCLUSIONS: As a result, the reduced peak flow and discharge were found through the SWMM 5.0 program. It can be concluded that the flood is effectively reduced when the drainage asphalt concrete pavements are used.

Assessing Nonpoint Sources Pollution Affected by Regulating Gate and Liquid Manure Application in Small Agricultural Watershed (제수문 영향 및 액비시용 증가에 따른 농업소유역에서의 비점오염원 특성 평가)

  • Song, Jae-Do;Jang, Taeil;Son, Jae-Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.31-38
    • /
    • 2016
  • The purpose of this study was to assess nonpoint sources (NPS) pollution affected by liquid manure and regulating gate in a small agricultural watershed. The study area, which is a wide plain farmland, was operating by the Buyong regulating gate in order to maintain irrigation water level during irrigation period. Consequentially, runoff only occurs through the gate at each event in rainy season for avoiding farmland inundation. In addition, the usage ratio of liquid manure in the study area has been increased greatly since 2014. Discharge loads at the Hwaingsan bridge subwatershed were 1.2 times for T-N, 4-10 times for T-P, and 3-8 times for TOC compared with the Soyang watershed (control) during study period. The reason was that NPS pollutants from upper Gpeun and Sangri bridge subwatersheds, which are widely spraying with livestock liquid manure, were stack at this subwaterehd because of regulating gate in non-rainy seasons. A number of agricultural watersheds in Saemangeum watershed are affected by regulating gate and vigorous livestock activities so that substantial management schemes under controling regulating gate are needed for minimizing livestock related NPS.

Estimating Nutrients Delivery Ratios at the Subwatershed Scale -A Case Study at the Bochung-A Watershed- (소유역 유달율 추정공식 개발 -보청A유역을 중심으로-)

  • Jeon, Ji-Hong;Choi, Dong-Hyuk;Lim, Kyung-Jae;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.27-35
    • /
    • 2010
  • The characteristics of delivered nutrient loads were analyzed and the regression equations to estimate delivery ratios of nutrients (TN and TP) were developed using HSPF simulation results at six subwatersheds within the Bochung A unit watershed during 1998-2007. TN delivery ratio was higher than TP delivery ratio because significant amounts of TP was considered to be attached at soil as ${PO_4}^-$ during delivery process from discharged point of nutrient source to main stream. As a results of correlation analysis, factors related to geomorphic characteristics had not statistical correlation with TN and TP delivery ratios. TN loading rate from living and specific stream flow had statistical negative and positive correlation, respectively, with TN delivery ratio. TP loading rates from all sources and from land cover and specific stream flow had statistical negative, negative and positive correlation, respectively. The specific stream flow represents the most strong correlation with nutrient delivery ratios. The regression equations to estimate delivery ratios for TN and TP were developed by including statistical correlated factors and showed high efficiency of 0.98 and 0.95 of coefficient of determination for TN and TP, respectively.

A Study on the Computation of Curve Number Using GIS (GIS를 이용한 CN 산정에 관한 연구)

  • Cho, Yong-Jae;Park, Sang-Ju;Jeong, In-Ju;Kim, Sang-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.3 s.26
    • /
    • pp.47-53
    • /
    • 2003
  • Recently, there is studying about slope analysis according to cell size and affect in conformity to determination of hydrologic topographical parameters the cell size a classified map scale about subwatershed. In this study, we wish to offer the base data to determination of hydrologic topographical parameters request of runoff model analysis in this basin on the basis of this results that we compute the CN(curve number) using GIS after classify the map of soil and landuse on the Su-Young River basin. Also, as determination a classified cell size of $100m{\times}100m$ in case of the most optimum size.

  • PDF