• Title/Summary/Keyword: subwatershed

Search Result 62, Processing Time 0.017 seconds

A Study on Efficiency of Water Purification of Korean Village Bangjuk[dike] as a Means of Ecological Watershed Management (생태적 유역관리 도구로써 마을방죽의 수질정화 효율성 고찰)

  • An, Byung-Chul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.90-100
    • /
    • 2012
  • This study centering on 10 village - Bangjuks analyzed multifunctionality value of village Bangjuks which have been main water treatment system in Korean traditional villages. On the basis of understanding the structure and character of components such as the well, common spring, village waterway and others which making water-flow and consisting of aquatic system in Korean traditional village Bangjuk, the conclusion as the instrumental device of social and ecological role and ecological watershed management, securing the ecosystem soundness of the damaged or deteriated aquatic ecosystem due to the industrialization and urbanization is as below; 1. The traditional village Bangjuk was environmentally friendly hydraulic system which gathers waterways of village into a point including sewage water, retains and flows out to village through agricultural waterway. Through this Bangjuk, they have managed sewage and rainfall runoff flowed out village efficiently. It is not only a detention system of water but a kind of eco-friendly system that flow out water into the rivers after reusing and filtering it. 2. Around five traditional villages and five villages after modernization, this study classified the types of village Bangjuk as three types considering geographic location, size, etc; marsh type of low swamp, high water -low rice field type of natural flow stucture, low water - high rice field type requiring artificial irrigation facility. All the five traditional villages were turned out to be marsh type of low swamp. Geoji, Sanjeri, Ma-am, Yangchon of the agricultural villages were high water-low rice filed type, and Sangchoenri village was classified low water-high rice field type. 3. This study checked up the function of water purification of village Bangjuk. In Wonteo and Geji villages affected by discharge of village sewer and domestic sewage, the efficiency of ammonia nitrogen($NH_3-N$) and total phosphorus(T-P) was 56~95%, which was high. In Sangcheonri and Sanjeri villages strongly affected by stall and farmland, the efficiency of suspended solids(SS) was 70~85%, and that of total nitrogen(T-N) and total phosphorus(T-P) was 5.3~65%. 4. A water purification system can be found out in the system of village Bangjuk that filter out village sewage and rainfall runoff flowed through the settle and filter of pollution source and denitrification of plants. Through this system of village Bangjuk, it must be used as the basic facilities for the ecological watershed management. The sewage management system of village Bangjuk as a eco-filter must be used and studied as an eco-friendly facility for the ecological watershed management around the subwatershed and catchment.

Assessment of stream water quality and pollutant discharge loads affected by recycled irrigation in an agricultural watershed using HSPF and a multi-reservoir model (HSPF와 다중 저류지 모형을 이용한 농업지역 순환관개에 의한 하천 수질 및 배출부하 영향 분석)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2023
  • The recycled irrigation is a type of irrigation that uses downstream water to fulfill irrigation demand in the upstream agricultural areas; the used irrigation water returns back to the downstream. The recycled irrigation is advantageous for securing irrigation water for plant growth, but the returned water typically contains high levels of nutrients due to excess nutrients inputs during the agricultural activities, potentially deteriorating stream water quality. Therefore, quantitative assessment on the effect of the recycled irrigation on the stream water quality is required to establish strategies for effective irrigation water supply and water quality management. For this purpose, a watershed model is generally used; however no functions to simulate the effects of the recycled irrigation are provided in the existing watershed models. In this study, we used multi-reservoir model coupled with the Hydrological Simulation Program-Fortran (HSPF) to estimate the effect of the recycled irrigation on the stream water quality. The study area was the Gwangok stream watershed, a subwatershed of Gyeseong stream watershed in Changnyeong county, Gyeongsangnam-do. The HSPF model was built, calibrated, and used to produce time series data of flow and water quality, which were used as hypothetical observation data to calibrate the multi-reservoir model. The calibrated multi-reservoir model was used for simulating the recycled irrigation. In the multi-reservoir model, the Gwangok watershed consisted of two subsystems, irrigation and the Gwangok stream, and the reactions (plant uptake, adsorption, desorption, and decay) within each subsystem, and fluxes of water and materials between the subsystems, were modeled. Using the developed model, three scenarios with different combinations of the operating conditions of the recycled irrigation were evaluated for their effects on the stream water quality.