• 제목/요약/키워드: subtraction hybridization

검색결과 24건 처리시간 0.029초

The Effect of Dietary Docosahexaenoic Acid Enrichment on the Expression of Porcine Hepatic Genes

  • Chang, W.C.;Chen, C.H.;Cheng, W.T.K.;Ding, S.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.768-774
    • /
    • 2007
  • To study the effect of dietary docosahexaenoic acid (DHA) enrichment on the expression of hepatic genes in pigs, weaned, crossbred pigs (30 d old) were fed diets supplemented with either 2% tallow or DHA oil for 18 d. Hepatic mRNA was extracted. Suppression subtractive hybridization was used to explore the hepatic genes that were specifically regulated by dietary DHA enrichment. After subtraction, we observed 288 cDNA fragments differentially expressed in livers from pigs fed either 2% DHA oil or 2% tallow for 18 d. After differential screening, 7 genes were found to be differentially expressed. Serum amyloid A protein 2 (SAA2) was further investigated because of its role in lipid metabolism. Northern analysis indicated that hepatic SAA2 was upregulated by dietary DHA enrichment (p<0.05). In a second experiment, feeding 10% DHA oil for 2d significantly increased the expression of SAA2 (compared to the 10% tallow group; p<0.05). The porcine SAA2 full length cDNA sequence was cloned and the sequence was compared to the human and mouse sequences. The homology of the SAA2 amino acid sequence between pig and human was 73% and between pig and mouse was 62%. There was a considerable difference in SAA2 sequences among these species. Of particular note was a deletion of 8 amino acids, in the pig compared to the human. This fragment is a specific characteristic for the SAA subtype that involved in acute inflammation reaction. Similar to human and mouse, porcine SAA2 was highly expressed in the liver of pigs. It was not detectable in the skeletal muscle, heart muscle, spleen, kidney, lung, and adipose tissue. These data suggest that SAA2 may be involved in mediation of the function of dietary DHA in the liver of the pig, however, the mechanism is not yet clear.

($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향 (The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts)

  • 임기정;한경윤;김병옥;임창엽;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

발생중인 생쥐 치아 및 치주조직에서 치주인대-특이 단백질; PDLs22의 발현 (Expression of PDL-specific protein;PDLs22 on the developing mouse tooth and periodontium)

  • 박중원;박병기;김상목;김병옥;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.1-12
    • /
    • 2002
  • The periodontal ligament(PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. PDL-specific protein;PDLs22 had been previously identified as a novel protein isolated from cultured human PDL fibroblasts using subtraction hybridization between human gingival fibroblasts and PDL fibroblasts. The aim of this study was to examine the expression pattern and tissue localization of PDLs22 protein in embryonic and various postnatal stages of developing mouse using immunohistochemical staining. Embryos (E18) and postnatal (P1, P4, P5, P15, P18) were decapitated and the heads were fixed overnight in a freshly prepared solution of 4% paraformaldehyde. Some specimens were decalcified for $2{\sim}4$ weeks in a solution containing 10% of the disodium salt of ethylenediamine-tetraacetic acid (EDTA). Next, tissues were dehydrated, embedded in paraffin and sectioned serially at $6{\mu}m$ in thickness. Polyclonal antiserum raised against PDLs22 peptides, ISNKYLVKRQSRD, were made. The localization of PDLs22 in tissues was detected by polyclonal antibody against PDLs22 by means of immunohistochemical staining. The results were as follows; 1. Expression of PDLs22 protein was not detected in the tooth germ of bud and cap stage. 2. At the late bell stage and root formation stage, strong expression of PDLs22 protein was observed in developing tooth follicle, osteoblast-like cells, and subodontoblastic cells in the tooth pulp, but not in gingival fibroblasts, ameloblasts and odontoblasts of tooth germ 3. In erupted tooth, PDLs22 protein was intensely expressed in PDL and osteoblast-like cells of alveolar bone, but not in gingival fibroblasts, mature osteocytes and adjacent salivary glands. 4. In the developing alveolar bone and mid-palatal suture, expression of PDLs22 protein was seen in undifferentiated mesenchymal cells and osteoblast-like cells of developing mid-palatal suture, but not in mature osteocytes and chondrocytes. These results suggest that PDLs22 protein may play an important role in the differentiation of undifferentiated mesenchymal cells in the bone marrow and PDL cells, which can differentiate into multiple cell types including osteoblasts, cementoblasts, and PDL fibroblasts. However, more researches should be performed to gain a better understanding of the exact function of PDLs22 protein which related to the PDL cell differentiation.

법랑모세포 분화와 성숙과정에서 OD314의 발현 (EXPRESSION OF OD314 DURING AMELOBLAST DIFFERENTIATION AND MATURATION)

  • 박주철;안성민;김흥중;정문진;박민주;신인철;손호현
    • Restorative Dentistry and Endodontics
    • /
    • 제30권5호
    • /
    • pp.423-430
    • /
    • 2005
  • 법랑모세포는 법랑질을 형성하고 유지하는 세포로, 법랑질의 유기기질을 분비하고 법랑질 석회화 과정에도 관여한다. 치아 발생과정에서 법랑모세포의 분화는 순차적인 상피-간엽 상호작용에 의하여 조절되나, 분화나 성숙과정의 정확한 기전은 아직까지 잘 알려져 있지 않다. 최근에 상아모세포에서 처음 발견된 OD314가 치아 발생과정에서 상아질을 형성하는 상아모세포 뿐 아니라 법랑모세포에도 발현된다고 하였다. 이에 본 연구에서는 생쥐 하악 전치의 다양한 시기의 법랑모세포를 이용하여, 형태학적 분석과 in-situ hybridization에 의한 OD314 mRNA의 발현 그리고 OD314 항체를 이용한 면역조직화학적 분석을 통하여 OD314유전자의 법랑모세포 분화와 성숙과정에서의 역할을 연구하여 다음과 같은 결과를 얻었다. 1. 형태학적으로 법랑모세포는 분화 단계에 따라 분비 전단계 법랑모세포, 분비기 법랑모세포, 성숙기의 평탄끝 법랑모세포와 성숙기의 주름끝 법랑모세포로 구분되었다. 2. OD314 mRNA는 분비기의 법랑모세포에서부터 발현되기 시작하여 법랑모세포가 성숙해갈 수록 그 발현이 증가하였다. 3. OD314 단백질은 분비 전단계의 법랑모세포에서는 발현되지 않고, 분비기의 법랑모세포에서는 세포질에 전체적으로 발현되었다. 성숙기의 평탄끝 법랑모세포와 주름끝 법랑모세포에서는 세포의 근심과 원심끝단에 OD314 단백질이 강하게 발현되었다. 이상의 결과를 종합하여 OD314는 법랑모세포의 분화와 성숙과정에서 세포질 내부에서 특징적인 역할을 하는 것으로 사료된다.