• Title/Summary/Keyword: subsurface irrigation

Search Result 41, Processing Time 0.024 seconds

Water Use Efficiency of Subsurface Drip Irrigation and Furrow Irrigation (지하점적관개와 고랑관개의 물 이용 효율)

  • Song, In-Hong;Waller Peter. M.;Choi, C. Yeon-Sik;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.3-13
    • /
    • 2007
  • The primary objective of this study was to compare water use efficiencies between subsurface drip irrigation and furrow irrigation. The uniformity of used drip lines was tested to determine if clogging would be a threat to the long-term success of a subsurface drip irrigation system. Three crops, cantaloupe, lettuce, and bell pepper, were grown in four plots for each irrigation system. Significantly less water was applied with subsurface drip irrigation than with furrow irrigation (29.5 % less for cantaloupe and 43.2 % less for bell poppet) in order to produce similar crop yields. Water use efficiencies with subsurface drip irrigation were significantly higher than those with furrow irrigation fur cantaloupe (P-value = 0.018) and bell pepper (P-value ${\leq}$ 0.001). Drip-irrigated lettuce, a shallow-rooted crop, had moderately higher water use efficiency during the first two seasons, while no difference was observed in the third season. After the experiment, the uniformity of the drip lines was 92.1 % on average and classified as good. The high values fur water use efficiency and uniformity indicate that subsurface drip irrigation can be a sustainable method for conserving irrigation water.

Current Status and Application of Agricultural Subsurface Dams in Korea (국내 농업용 지하댐의 현황 및 활용 사례)

  • Yong, Hwan-Ho;Song, Sung-Ho;Myoung, Woo-Ho;An, Jung-Gi;Hong, Soon-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.18-26
    • /
    • 2017
  • The increasing frequency of droughts has been increasing the necessity of utilizing subsurface dams as reliable groundwater resources in areas where it is difficult to supply adequate agricultural water using only surface water. In this study, we analyzed the current status and actual conditions of five agricultural subsurface dams as well as the effect of obtaining additional groundwater from subsurface dams operated as one aspect of the sustainable integrated water management system. Based on the construction methods and functions of each subsurface dam, the five subsurface dams are classified into three types such as those that derive water from rivers, those that prevent seawater intrusion, and those that link to a main irrigation canal. The classification is based on various conditions including topography, reservoir location, irrigation facilities, and river and alluvial deposit distributions. Agricultural groundwater upstream of subsurface dams is obtained from four to five radial collector wells. From the study, the total amount of groundwater recovered from the subsurface dam is turned out to be about 29~44% of the total irrigation water demand, which is higher than that of general agricultural groundwater of about 4.6%.

Effects of Tillage and Fertilizers on Growth Characteristics and Yield of Soybean (무경운 콩 재배를 위한 유기질 비료와 화학비료의 적정 시비법)

  • Jung, Hyun-Jin;Park, Hyung-Jun;Kwon, Soo-Jeong;Yoo, Jin;Kim, Suk-Jin;Chung, Keun-Yook;Kim, Hong-Sig;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.264-269
    • /
    • 2016
  • The present study was conducted to establish the optimal fertilization type and method for no-tillage during the first year of No-tillage (NT) and Conventional-tillage (CT) practices for soybean, using different types of fertilizers. In this experiment, the culm length and stalk diameter showed a greater response to fertilization with surface irrigation than to conventional fertilization. The fastest flowering period (July 28) occurred using chemical fertilization applied via subsurface irrigation. Comparing maturation based on growth characteristics and flowering date revealed that fertilization with subsurface irrigation was more effective for the growth of crops than other methods. Regarding yield, there was no significant difference between livestock and chemical fertilizers in subsurface irrigation, but there were significant differences between these fertilizers when using conventional fertilization methods. Based on the results, livestock fertilizer with subsurface irrigation effectively enhanced crop quantity. Nitrogen absorption of plants using subsurface irrigation was more effective than that using conventional fertilization. Regarding phosphorus absorption of plants, chemical fertilizers showed higher absorption than did livestock fertilizers for both subsurface irrigation and conventional fertilization. Unlike nitrogen, phosphorus was highly absorbed using conventional fertilization. Absorption of phosphorus and potassium were similar but phosphorus was not absorbed using livestock fertilizers applied either using subsurface irrigation or with conventional fertilization.

Effects of the irrigation Rate on Wetted Patterns in Sandy Loam Soil Under Trickle irrigation Condition (점적관개에서 관개율이 Sandy Loam토양의 습윤양상에 미치는 영향)

  • 김철수;이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.104-115
    • /
    • 1989
  • In an effort to clarify the wetted patterns of sandy loam soil under trickle irrigation conditions, the distance of wetted zone, infiltration capacity and soil wetted patterns, etc. were measured by gypsum block as soil moisture sensor located every 5 cm vertically and horizontaly in the soil bin under the such conditions as a). irrigation rates set to 2, 4, 6, 8 liters per hour b). total amount of water applied fixed to 14.62 liters per soil bin c) the hearing force of soil measured by plate penetrometer ranging from 1.04 to 1.22kg/cm$_2$ The results can be summarized as follows ; 1. The wetted distance in horizontal direction(H), the wetted distance in vertical direction(D), the horizontal infiltration capacity (iH) and the vertical infiltration capacity(in)could by explained as a function of time t. 2. The horizontal wetted distance (H) is explained by an exponetial function H= a$.$ t where b was found ranging from 021 to 026 under surface trickle irrigation, which was considered a lotlower than the classical value of 0.5 and these measurements were indifferent to the increasing irrigation rates. 3. As for the surface trickle irrigation where horizontal infiltration capacity(iH) is explained as iH = A $.$ t h, the coefficient A increases with respect to irrigation rates within the limits of 0.89~1.34. 4. In terms of surface trickle irrigation of the ratio of Dm Which is maximum vertical wetted distance to Hm, which is maximum horizontal wetted distance, found to be within range of 1.0 to 1.21. It was also noted that the value of Dm decreses when irrigation rates increases while the value of Hm changes the opposite direction. 5. The optimum location of sensors from emitter for surface trickle irrigation should he inside of hemisphere whose lateral radius is 28~30cm long and vertical radius is 10~12cm long. The distance between emitters should be within 60cm long. 6. In the study of vertical wetted distance( D) where D= a $.$ tb, the exponential coefficient b ranged from 0.61 to 0.75 in surface trickle irrigation, and from 0A9 to 0.68 for subsurface trickle irrigation. These measurements showed an increasing tendency to with respect to irrigation rates. 7. In case of vertical infiltration capacity( in), where iD= A $.$ t 1-h, the coefficient A for surface trickle irrigation found to be within range of 0.16 to 0.19 and did not show any relationships with varying degree of irrigation rates. However, the coefficient was varying from 0.09 to 0.22 and showed a tendency to increase vis-a-vis irrigation rates for subsurface trickle irrigation, in contrast. 8. In the observation of subsurface trickle irrigation, it was found that Dm/Hm ratio was within 1.52 to 1.91 and showed a decreasing tendency with respect to increasing rates of irrigation. 9. The location of sensors for subsurface trickle irrigation follows same pattern as above, with vertical distance from emitter being 10~17cm long and horizontal 22~25cm long. The location of emitter should be 50 cm. 10.The relationship between VS which is the volume of wetted soil and Q which is the total amount of water when soil is reached field capacity could be explained as VS= 2.914Q0.91and the irrigation rates showed no impacts on the above relationship.

  • PDF

Effect of Subsurface Drip Pipes Spacing on the Yield of Lettuce, Irrigation Efficiency, and Soil Chemical Properties in Greenhouse Cultivation (지중 점적관수 호스 설치 간격이 상추 수량, 관수량 및 토양 화학성에 미치는 영향)

  • Park, Jin Myeon;Lim, Tae Jun;Lee, Seong Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • This research was carried out to investigate the effect of installation spacing of subsurface drip irrigation pipe on the mineral content, nutrient uptake, yield of lettuce, water requirement for irrigation, and soil chemical properties in greenhouse cultivation. Semi-forcing and retarding culture were implemented in this experiment, with four treatments containing overhead spray irrigation and three subsurface irrigation lateral spacing intervals of 30, 40, 50 cm at a depth of 30 cm from soil surface, respectively. Each mineral content of lettuce grown under subirrigation system did not show significant difference between treatments, however the uptake of nutrients was lower at 50 cm-distance. The yield was largest in 30 cm-subirrigation (SI), followed by 40 cm-SI, overhead spray, and 50 cm-treatment. Water requirement for irrigation was highest in overhead spray, and it was in reverse proportion to the distance of irrigation pipes. $NO_3$-N content in the soil, at a depth of 10 cm, showed a higher value in 50 cm-SI, followed by 40 cm-SI, overhead spray and 30 cm-SI. Exchangeable K content was highest in 50 cm-SI, Mg was highest in 40 cm-SI, and Ca was lowest in 30 cm-SI. In conclusion, the lettuce yield was not different between 30 and 40 cm-SI, but water requirement for irrigation was lower as the distance of irrigation pipes was further. And it seems to be needed more precise research on this theme, because crop yield and the dynamics of soil minerals in subsurface irrigation can vary with the depth and distance of irrigation pipes, dripper, water flow depending on the soil texture, and plant response to soil minerals.

A Study on the Automatic Irrigation Control System in the Vinyl-House Cultivation Utilizing Microcomputer (마이크로컴퓨터를 이용한 시설원예작물 재배의 관개자동화에 관한 연구)

  • Kim, C.S.;Kim, J.H.;Chung, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.2
    • /
    • pp.128-136
    • /
    • 1989
  • The purpose of this study was to develop a computer operated automatic drip irrigation system for application in vinyl-house cultivation. The results can be summarized as follows: 1) The T-type ice compensation wire was used to measure the temperature. The voltage level measured up to 0.02 volt was used as input to an 8-bit A/D converter. 2) A specially devised tensiometer was used to content the watering system. When the needle of the pressure gauge reaches the lower threshold position it turns on the pumping system and turns off when it reaches higher threshold position. 3) In order to use the multiple gypsum blocks for one transducer, reed relays and a D/O board were used to make the sequential switching possible. 4) It was possible to automate the trickle irrigation system for the whole growth period of vinyl-house crops with the help of microcomputer. 5) In terms of furrow irrigation, the irrigation water consumption was the smallest, 2.8 times less than conventional method of surface trickle irrigation, 3.4 times less than subsurface trickle irrigation method. 6) In terms of productivity of cucumber, there was a drop in productivity when compared to furrow irrigation method, 7.2% for surface trickle irrigation, 27.4% for subsurface irrigation method.

  • PDF

Predicting the Impact of Subsurface heterogeneous Hydraulic Conductivity on the Stochastic Behavior of Well Draw down in a Confined Aquifer Using Artificial Neural Networks

  • Abdin Alaa El-Din;Abdeen Mostafa A. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1582-1596
    • /
    • 2005
  • Groundwater flow and behavior have to be investigated based on heterogeneous subsurface formation since the homogeneity assumption of this formation is not valid. Over the past twenty years, stochastic approach and Monte Carlo technique have been utilized very efficiently to understand the groundwater flow behavior. However, these techniques require lots of computational and numerical efforts according to the various researchers' comments. Therefore, utilizing new techniques with much less computational efforts such as Artificial Neural Network (ANN) in the prediction of the stochastic behavior for the groundwater based on heterogeneous subsurface formation is highly appreciated. The current paper introduces the ANN technique to investigate and predict the stochastic behavior of a well draw down in a confined aquifer based on subsurface heterogeneous hydraulic conductivity. Several ANN models are developed in this research to predict the unsteady two dimensional well draw down and its stochastic characteristics in a confined aquifer. The results of this study showed that ANN method with less computational efforts was very efficiently capable of simulating and predicting the stochastic behavior of the well draw down resulted from the continuous constant pumping in the middle of a confined aquifer with subsurface heterogeneous hydraulic conductivity.

Response of Soybean (Glycine max L.) to Subsurface Drip Irrigation with Different Dripline Placements at a Sandy-loam Soil

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.79-89
    • /
    • 2018
  • Subsurface drip irrigation (SDI) system is considered one of the most effective methods for water application. A 2-year field study was conducted to investigate the effect of SDI systems with various dripline spacing (0.7 or 1.4 m) and position (under furrow or ridge) on soybean (Glycine max L.) production at a sandy-loam soil in Miryang, South Korea. For 2016-2017, average grain yield in SDI irrigated plots, $3.16Mg\;ha^{-1}$, was statistically greater than rainfed irrigated plot ($2.63Mg\;ha^{-1}$). Soybean grain yield averaged $3.25Mg\;ha^{-1}$ for the 0.7 m dripline spacing and $3.07Mg\;ha^{-1}$ for the 1.4 m spacing for the two-year period compared to a rainfed irrigated average of $2.63Mg\;ha^{-1}$ for the same period. Soybean treated with SDI system had significantly greater values of normalized difference vegetation index and stomatal conductance, indicating that soybean plants in SDI plots had greater photosynthetic and stomatal activity due to the higher water availability in soil. Irrigation water use efficiency (IWUE) was greatest in the plot of 0.7 m spacing installed under ridge position than any other plot across growing season. Average soil water content in plots with 0.7 m dripline spacing was $0.21m^3\;m^{-3}$ at 5 cm depth layer, which was 45% greater compared to the plots with 1.4 m spacing, even though the gross irrigation amounts were greater in 1.4 m spacing plots. It is concluded that wide dripline spacing (1.4 m) is probably the more economical installation design for SDI system compared to 0.7 m spacing in this study soil because the initial cost for dripline may be reduced with wide spacing design, even though the IWUE is greater in the plot of 0.7 m dripline spacing.

Analyzing Soybean Growth Patterns in Open-Field Smart Agriculture under Different Irrigation and Cultivation Methods Using Drone-Based Vegetation Indices

  • Kyeong-Soo Jeong;Seung-Hwan Go;Kyeong-Kyu Lee;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.45-56
    • /
    • 2024
  • Faced with aging populations, declining resources, and limited agricultural productivity, rural areas in South Korea require innovative solutions. This study investigated the potential of drone-based vegetation indices (VIs) to analyze soybean growth patterns in open-field smart agriculture in Goesan-gun, Chungbuk Province, South Korea. We monitored multi-seasonal normalized difference vegetation index (NDVI) and the normalized difference red edge (NDRE) data for three soybean lots with different irrigation methods (subsurface drainage, conventional, subsurface drip irrigation) using drone remote sensing. Combining NDVI (photosynthetically active biomass, PAB) and NDRE (chlorophyll) offered a comprehensive analysis of soybean growth, capturing both overall health and stress responses. Our analysis revealed distinct growth patterns for each lot. LotA(subsurface drainage) displayed early vigor and efficient resource utilization (peaking at NDVI 0.971 and NDRE 0.686), likely due to the drainage system. Lot B (conventional cultivation) showed slower growth and potential limitations (peaking at NDVI 0.963 and NDRE 0.681), suggesting resource constraints or stress. Lot C (subsurface drip irrigation) exhibited rapid initial growth but faced later resource limitations(peaking at NDVI 0.970 and NDRE 0.695). By monitoring NDVI and NDRE variations, farmers can gain valuable insights to optimize resource allocation (reducing costs and environmental impact), improve crop yield and quality (maximizing yield potential), and address rural challenges in South Korea. This study demonstrates the promise of drone-based VIs for revitalizing open-field agriculture, boosting farm income, and attracting young talent, ultimately contributing to a more sustainable and prosperous future for rural communities. Further research integrating additional data and investigating physiological mechanisms can lead to even more effective management strategies and a deeper understanding of VI variations for optimized crop performance.

Effects of Subsurface Drip Irrigation and Aeration in Green Pepper Cultivation (시설풋고추 재배에서의 지중관수 및 공기주입 효과)

  • Kwon, Joon-Kook;Kang, Nam-Jun;Cho, Myeomg-Whan;Kang, Yun-Im;Park, Kyoung-Sub;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.225-231
    • /
    • 2009
  • 'Nokkwang' green pepper plants were grown in soil system (silty loam with pH 6.5) under the greenhouse, to determine the effects of subsurface drip irrigation (SDI) and subsurface drip irrigation plus aeration (SDIA) into root zone comparing with conventional surface drip irrigation (DI) in terms of water use efficiency, soil properties, and growth and fruit yield. Two drip lines per crop row were layed on the soil surface in DI system, buried at a depth of 20cm below the soil surface in SDI system, and also buried at a depth of20cm below the soil surface and aerated for 3minutes a hour during the daytime ($08:00{\sim}19:00$) by a air compressor in SDIA system. A automatic irrigation with starting point of -20kPa and ending point of -10kPa based on soil moisture contents was applied by controllers and electronic vacum soil moisture sensors. Reduction in soil moisture contents was delayed in SDI and SDIA, compared to DI. Irrigation amount applied in pepper cultivation was around 30% less in SDI than in DI. Electric conductivity and nitrate nitrogen content in the surface soil grown green pepper were significantly lowered in SSDI and SDIA, compared to DI. Better development of root system was observed in SDIA and SDI than in DI. Results showed that pepper fruit yield increased by 30% in SDIA and 22% in SDI in comparision with DI.