• 제목/요약/키워드: subsurface flow

검색결과 244건 처리시간 0.028초

자연전위의 효율적 측정을 위한 전극의 잡음요소 분석

  • Song, Seong-Ho;Gwon, Byeong-Du
    • Journal of the Korean Geophysical Society
    • /
    • 제5권1호
    • /
    • pp.9-18
    • /
    • 2002
  • We performed a long-term monitoring of self-potential(SP) using the Cu-CuSO₄non-polarizable electrode and copper-clad electrodes(CCE) in a test site in order to analyze the effects of surrounding environmental noises such as temperature, rainfall and soil moisture content on the electrodes. Analysis of the temperature dependence of the non-polarizable electrodes showed that is temperature coefficient was about +0.5 mV/°Fwhen its end was exposed to atmosphere while it was less than +0.5 mV/℃ when submerged into the subsurface, which reflects that there exists an 8 to 11 hour lag between temperatures at the depth of 15 cm and atmosphere. CCE was independent of atmospheric temperature in subsurface but showed temperature coefficient of 1.0 mV/℃ when exposed to atmosphere. Drifts of 1 to 2 mV recorded with the non-polarizable electrode directly related to the soil moisture content when it was buried in subsurface. Drift with CCE also showed similar trend to the soil moisture content, and 5 mV drift was recorded according to 5% of daily variation. The soil moisture content had strong effects on the measurement with CCE in rainfall since the flow potential is generated on the surface of the electrode.

  • PDF

Change in Physical Properties depending on Contaminants and Introduction to Case Studies of Geophysical Surveys Applied to Contaminant Detection (오염원에 따른 오염지역 물성 변화 및 물리탐사 적용 사례 소개)

  • Yu, Huieun;Kim, Bitnarae;Song, Seo Young;Cho, Sung Oh;Caesary, Desy;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • 제22권3호
    • /
    • pp.132-148
    • /
    • 2019
  • Recently, safety and environmental concerns have become major social issues. Especially, a special underground-safety law has been made and enacted to prevent ground subsidence around construction sites. For environmental problems, several researches have started or will start on characterization of contaminated sites, in-situ environmental remediation in subsurface, and monitoring of remediation results. As a part of the researches, geophysical surveys, which have been mainly applied to explore mineral resources, geological features or ground, are used to characterize not only contaminated areas but also fluid flow paths in subsurface environments. As a basic study for the application of geophysical surveys to detect contamination in subsurface, this paper analyzes previous researches to understand changes in geophysical properties of contaminated zones by various contaminants such as leachate, heavy metals, and non-adequate phase liquid (NAPL). Furthermore, this paper briefly introduces how geophysical surveys like direct-current electrical resistivity, induced polarization and ground penetration radar surveys can be applied to detect each contamination, before analyzing case studies of the applications in contaminated areas by NAPL, leachate, heavy metal or nitrogen oxides.

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • 제22권3호
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

Concept and Application of Generalized Preferential Flow Model (GPFM) (Generalized Preferential Flow Model (GPFM)의 개념과 적용사례 연구)

  • Kim, Young-Jin;Steenhuis, Tammo;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • 제12권5호
    • /
    • pp.33-36
    • /
    • 2007
  • In recent years the convective-dispersive equation has been often discredited in predicting subsurface solute transport under field conditions due to presence of preferential flow paths. Kim et al. (2005) proposed a simple equation that can predict the breakthrough of solutes without excessive data requirements. In their Generalized Preferential Flow Model (GPFM), the soil is conceptually divided in a saturated "distribution layer" near the surface and a "conveyance zone" with preferential flow paths below. In this study, we test the model with previously published data, and compare it with a classical convective-dispersive model (CDM). With three parameters required-apparent water content of the distribution zone, and solute velocity and dispersion in the conveyance zone-GPFM was able to describe the breakthrough of solutes both through silty and sandy loam soils. Although both GPFM and CDM fitted the data well in visual, variables for GPFM were more realistic. The most sensitive parameter was the apparent water content, indicating that it is the determining factor to apply GPFM to various soil types, while Kim et al. (2005) reported that changing the velocity of GPFM reproduced solute transport when same soils were used. Overall, it seems that the GPFM has a great potential to predict solute leaching under field conditions with a wide range of generality.

Development of Multiphase Flow Simulator Using the Fractional Flow Based Approach for Wettability Dependent NAPL Migration (친수성에 의존하는 소수성 액체의 거동을 위한 분율 유동 접근 방식을 이용한 다상 유동 수치 모델링 개발)

  • Suk, Hee-Jun;Yeo, In-Wook;Lee, Kang-Kun
    • Economic and Environmental Geology
    • /
    • 제44권2호
    • /
    • pp.161-170
    • /
    • 2011
  • The multiphase flow simulator, CHEMPS, was developed based on the fractional flow approach reported in the petroleum engineering literature considering fully three phase flow in physically and chemically heterogeneous media. It is a extension of MPS developed by Suk and Yeh (2008) to include the effect of wettability on the migration of NAPL. The fractional flow approach employs water, total liquid saturation and total pressure as the primary variables. Most existing models are limited to two-phase flow and specific boundary conditions when considering physically heterogeneous media. In addition, these models focused mainly on the water-wet media. However, in a real system, variations in wettability between water-wet and oil-wet media often occur. Furthermore, the wetting of porous media by oil can be heterogeneous, or fractional, rather than uniform due to the heterogeneous nature of the subsurface media and the factors that affect the wettability. Therefore, in this study, the chemically heterogeneous media considering fractional wettability as well as physically heterogeneous media were simulated using CHEMPS. In addition, the general boundary conditions were considered to be a combination of two types of boundaries of individual phases, flux-type and Dirichlet type boundaries.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • 제26권2호
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

Development of a Meso-Scale Distributed Continuous Hydrologic Model and Application for Climate Change Impact Assessment to Han River Basin (분포형 광역 수문모델 개발 및 한강유역 미래 기후변화 수문영향평가)

  • Kim, Seong-Joon;Park, Geun-Ae;Lee, Yong-Gwan;Ahn, So-Ra
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제17권3호
    • /
    • pp.160-174
    • /
    • 2014
  • The purpose of this paper is to develop a meso-scale grid-based continuous hydrological model and apply to assess the future watershed hydrology by climate change. The model divides the watershed into rectangular cells, and the cell profile is divided into three layered flow components: a surface layer, a subsurface unsaturated layer, and a saturated layer. Soil water balance is calculated for each grid cell of the watershed, and updated daily time step. Evapotranspiration(ET) is calculated by Penman-Monteith method and the surface and subsurface flow adopts lag coefficients for multiple days contribution and recession curve slope for stream discharge. The model was calibrated and verified using 9 years(2001-2009) dam inflow data of two watersheds(Chungju Dam and Soyanggang Dam) with 1km spatial resolution. The average Nash-Sutcliffe model efficiency was 0.57 and 0.71, and the average determination coefficient was 0.65 and 0.72 respectively. For the whole Han river basin, the model was applied to assess the future climate change impact on the river bsain. Five IPCC SRES A1B scenarios of CSIRO MK3, GFDL CM2_1, CONS ECHO-G, MRI CGCM2_3_2, UKMO HADGEMI) showed the results of 7.0%~27.1 increase of runoff and the increase of evapotranspiration with both integrated and distributed model outputs.

Application of Subsurface Flow Wetland using the Phragmites australis for Water Quality Improvement of the Agricultural Reservoi (농업용 저수지 수질개선을 위한 지하흐름 갈대 인공습지의 적용)

  • Nam, Gui Sook;Pae, Yo Sop;Kim, Hyung Joong;Lee, Sang Joon;Lee, Gwang Sik
    • Journal of Wetlands Research
    • /
    • 제6권4호
    • /
    • pp.59-69
    • /
    • 2004
  • Constructed wetlands are regarded as an important water treatment system for agricultural water quality improvement and management. The purpose of this study is to evaluate the application of subsurface flow wetland(SFW), using the Pharagmites australis as macrophytes, and to clarify the basic and essential factors to be considered in the construction and management of constructed wetlands. This study was carried out relatively short hydraulic residence time(HRT), 6hr ~ 72hr (3days), using eutrophic reservoir water with relatively low concentrations of influent and large quantity to be treated. The effluent satisfied the criteria of agricultural water quality. Removal efficiencies of Biochemical oxygen demand(BOD), Chemical oxygen demand(COD), Suspended solids(SS) and Chlorophyll a(Chl-a) were high in HRT 24hr, not any more significant increasement of removal efficiencies in HRT 48hr and 72hr. However, removal efficiencies of nitrogen and phosphorus increased as HRT increased, showing the highest efficiency at the 72hr of HRT in nitrogen, and 48hr in phosphorous. The SFW was very effective system for reservoir water quality improvement, and had the advantages of the reduction of purchasing cost to land required, lack of odors, and harmful insects, especially mosquito, the improvement of the scenic beauty and minimal risk of public exposure. Therefore, it was evaluated that the SFW was very available water treatment system for the water quality improvement of agricultural reservoir. However, it was need to consider with application of the SFW in high cost of construction and troublesome of management.

  • PDF

Hydrograph Separation using Geochemical tracers by Three-Component Mixing Model for the Coniferous Forested Catchment in Gwangneung Gyeonggido, Republic of Korea

  • Kim, Kyongha;Yoo, Jae-Yun
    • Journal of Korean Society of Forest Science
    • /
    • 제96권5호
    • /
    • pp.561-566
    • /
    • 2007
  • This study was conducted to clarify runoff production processes in forested catchment through hydrograph separation using three-component mixing model based on the End Member Mixing Analysis (EMMA) model. The study area is located in the coniferous-forested experimental catchment, Gwangneung Gyeonggido near Seoul, Korea (N 37 45', E 127 09'). This catchment is covered by Pinus Korainensis and Abies holophylla planted at stocking rate of 3,000 trees $ha^{-1}$ in 1976. Thinning and pruning were carried out two times in the spring of 1996 and 2004 respectively. We monitored 8 successive events during the periods from June 15 to September 15, 2005. Throughfall, soil water and groundwater were sampled by the bulk sampler. Stream water was sampled every 2-hour through ISCO automatic sampler for 48 hours. The geochemical tracers were determined in the result of principal components analysis. The concentrations of $SO_4{^{2-}$ and $Na^+$ for stream water almost were distributed within the bivariate plot of the end members; throughfall, soil water and groundwater. Average contributions of throughfall, soil water and groundwater on producing stream flow for 8 events were 17%, 25% and 58% respectively. The amount of antecedent precipitation (AAP) plays an important role in determining which end members prevail during the event. It was found that ground water contributed more to produce storm runoff in the event of a small AAP compared with the event of a large AAP. On the other hand, rain water showed opposite tendency to ground water. Rain water in storm runoff may be produced by saturation overland flow occurring in the areas where soil moisture content is near saturation. AAP controls the producing mechanism for storm runoff whether surface or subsurface flow prevails.

Sewage Treatment Using Natural Systems and Effluent Reuse for Crop Irrigation in Small Communities

  • Ham, Jong-Hwa;Yoon, Chun-G.;Jeon, Ji-Hong;Hwang, Ha-Sun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제45권7호
    • /
    • pp.70-82
    • /
    • 2003
  • A pilot study was performed from July 1998 to December 2002, including winter performance, to examine seasonal performance of a constructed wetland and subsequent pond system for treatment of sewage in small communities of Korea. Pond was operated as a intermittent-discharge pond during winter period, and continuous flow system during growing season; its effects was evaluated from December 2001 to April 2003. The subsurface flow (SSF) wetland was satisfactory for treating sewage with good removal efficiency even during the winter period. The wetland effluent concentrations of $BOD_5$ and TSS were often higher in winter than in the growing season, but this was explained by the higher loading rates, rather than lower removal efficiency. The relatively poor-quality wetland effluent was further polished during winter in the pond. The upper layer of the pond water column became remarkably clear immediately after ice melt. In the growing season, ponds could be operated as a continuous flow system to remove nutrients and pathogens, and the effluent of pond could be reused as a supplemental irrigation water without risk of infection by sewage-borne pathogens as well as causing adverse effect on growth and yield. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the intermittent-discharge pond was found to be effective for further polishing if necessary. Therefore, the combination of a wetland and subsequent pond system and reuse of effluent as crop irrigation water is recommended as a practical alternative to treat sewage in Korean small communities, and partial discharge of pond water in March is suggested.