• 제목/요약/키워드: substrate variety

검색결과 184건 처리시간 0.031초

$\mu$BGA 장기신뢰성에 미치는 언더필영향 (Effect of Underfill on $\mu$BGA Reliability)

  • 고영욱;신영의;김종민
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.138-141
    • /
    • 2002
  • There are continuous efforts in the electronics industry to a reduced electronic package size. Reducing the size of electronic packages can be achieved by a variety of means, and for ball grid array(BGA) packages an effective method is to decrease the pitch between the individual balls. Chip scale package(CSP) and BGA are now one of the major package types. However, a reduced package size has the negative effect of reducing board-level reliability. The reliability concern is for the different thermal expansion rates of the two-substrate materials and how that coefficient CTE mismatch creates added stress to the BGA solder joint when thermal cycled. The point of thermal fatigue in a solder joint is an important factor of BGA packages and knowing at how many thermal cycles can be ran before failure in the solder BGA joint is a must for designing a reliable BGA package. Reliability of the package was one of main issues and underfill was required to improve board-level reliability. By filling between die and substrate, the underfill could enhance the reliability of the device. The effect of underfill on various thermomechanical reliability issues in $\mu$BGA packages is studied in this paper.

  • PDF

Layer-by-layer Composition Modulation by Ion-induced Atomic Rearrangement in Metallic Alloys

  • 김병현;김상필;이광렬;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.359-359
    • /
    • 2010
  • Self-organized nanostructures of dots, holes or ripples produced by energetic ion bombardment have been reported in a wide variety of substrates. Ion bombardment on an alloy or compound also draws much attention because it can induce a surface composition modulation with a topographical surface structure evolution. V. B. Shenoy et al. further suggested that, in the case of alloy surfaces, the differences in the sputtering yields and surface diffusivities of the alloy components will lead to a lateral surface composition modulation [1]. In the present work, the classical molecular dynamics simulation of Ar bombardment on metallic alloys at room temperature revealed that this bombardment induces a surface composition modulation in layer-by-layer mode. In both the $Co_{0.5}Cu_{0.5}$ alloy and the CoAl B2 phase, the element of higher-sputtering yield is accumulated on the top surface layer, whereas it is depleted in lower layers. A kinetic model considering both the rearrangement and the sputtering of the substrate atoms agrees with the puzzling simulation results, which revealed that the rearrangement of the substrate atoms plays a significant role in the observed composition modulation.

  • PDF

Controlling of the heterogeniously growing GaN polycrystals using a quartz ring in the edge during the HVPE-GaN bulk growth

  • Park, Jae Hwa;Lee, Hee Ae;Park, Cheol Woo;Kang, Hyo Sang;Lee, Joo Hyung;In, Jun-Hyeong;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.439-443
    • /
    • 2018
  • The outstanding characteristics of high quality GaN single crystal substrates make it possible to apply the manufacture of high brightness light emitting diodes and power devices. However, it is very difficult to obtain high quality GaN substrate because the process conditions are hard to control. In order to effectively control the formation of GaN polycrystals during the bulk GaN single crystal growth by the HVPE (hydride vapor phase epitaxy) method, a quartz ring was introduced in the edge of substrate. A variety of evaluating method such as high resolution X-ray diffraction, Raman spectroscopy and photoluminescence was used in order to measure the effectiveness of the quartz ring. A secondary ion mass spectroscopy was also used for evaluating the variations of impurity concentration in the resulting GaN single crystal. Through the detailed investigations, we could confirm that the introduction of a quartz ring during the GaN single crystal growth process using HVPE is a very effective strategy to obtain a high quality GaN single crystal.

Synthesis of Isoamyl Fatty Acid Ester, a Flavor Compound, by Immobilized Rhodococcus Cutinase

  • Ye Won Jeon;Ha Min Song;Ka Yeong Lee;Yeong A Kim;Hyung Kwoun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1356-1364
    • /
    • 2024
  • Isoamyl fatty acid esters (IAFEs) are widely used as fruity flavor compounds in the food industry. In this study, various IAFEs were synthesized from isoamyl alcohol and various fatty acids using a cutinase enzyme (Rcut) derived from Rhodococcus bacteria. Rcut was immobilized on methacrylate divinylbenzene beads and used to synthesize isoamyl acetate, butyrate, hexanoate, octanoate, and decanoate. Among them, Rcut synthesized isoamyl butyrate (IAB) most efficiently. Docking model studies showed that butyric acid was the most suitable substrate in terms of binding energy and distance from the active site serine (Ser114) γ-oxygen. Up to 250 mM of IAB was synthesized by adjusting reaction conditions such as substrate concentration, reaction temperature, and reaction time. When the enzyme reaction was performed by reusing the immobilized enzyme, the enzyme activity was maintained at least six times. These results demonstrate that the immobilized Rcut enzyme can be used in the food industry to synthesize a variety of fruity flavor compounds, including IAB.

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

질화알루미늄 나노분말의 부착과 이를 활용한 초소수성 표면 제작 (Deposition of aluminum nitride nanopowders and fabrication of superhydrophobic surfaces )

  • 이광석;최헌주;조한동
    • 한국표면공학회지
    • /
    • 제57권1호
    • /
    • pp.49-56
    • /
    • 2024
  • Superhydrophobic surfaces have been expected to be able to provide considerable performance improvements and introduce innovative functions across diverse industries. However, representative methods for fabricating superhydrophobic surfaces include etching the substrate or attaching nanosized particles, but they have been limited by problems such as applicability to only a few materials or low adhesion between particles and substrates, resulting in a short lifetime of superhydrophobic properties. In this work, we report a novel coating technique that can achieve superhydrophobicity by electrophoretic deposition of aluminum nitride (AlN) nanopowders and their self-bonding to form a surface structure without the use of binder resins through a hydrolysis reaction. Furthermore, by using a water-soluble adhesive as a temporary shield for the electrophoretic deposited AlN powders, hierarchical aluminum hydroxide structures can be strongly adhered to a variety of electrically conductive substrates. This binder-free technique for creating hierarchical structures that exhibit strong adhesion to a variety of substrates significantly expands the practical applicability of superhydrophobic surfaces.

CK2 Enzyme Affinity Against c-myc424-434 Substrate in Human Lung Cancer Tissue

  • Yaylim, Ilhan;Ozkan, Nazli Ezgi;Isitmangil, Turgut;Isitmangil, Gulbu;Turna, Akif;Isbir, Turgay
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.5233-5236
    • /
    • 2012
  • CK2 is a serine threonine kinase that participates in a variety of cellular processes with more than 300 defined substrates. This critical enzyme is known to be upregulated in cancers, but the role of this upregulation in carcinogenesis is not yet fully understood but c-myc, one of the defined CK2 substrates, is a well-known proto-oncogene that is normally essential in developmental process but is also involved in tumor development. We evaluated the optimal enzyme and substrate concentrations for CK2 activity in both neoplastic and non-neoplastic human lung tissues using the c-$myc^{424-434}$ peptide (EQKLISEEDL) as a substrate. The activities measured for the neoplastic tissue were 600-750 U/mg protein while those for the control tissue was in the range of 650-800 U/mg. $K_m$ value for c-myc peptide was determined as $0.33{\mu}M$ in non-neoplastic tissue and $0.18{\mu}M$ in neoplastic tissue. In this study, we did not observe an increased activity in the neoplastic tissue when compared with the non-neoplastic lung tissue, but we recorded two times higher affinity for c-$myc^{424-434}$ in cancer tissue. Considering the metabolic position of c-$myc^{424-434}$, our results suggest that phosphorylation by CK2 may be important in dimerization and thus it might affect the regulation of c-myc in cancer tissues.

저서성 대형무척추동물의 서식 특성에 따른 미소서식처 유형화 (Classification of Microhabitats based on Habitat Orientation Groups of Benthic Macroinvertebrate Communities)

  • 김정우;김아름;공동수
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.728-735
    • /
    • 2017
  • Many restoration projects are underway to revive disturbed streams. In order to achieve successful stream restoration, a variety of microhabitats should be created to promote biological diversity. Research on biological classification of microhabitats is essential for biological diversity. However, research on classification using only physical environmental factors has been carried out. The purpose of this study is to classify and quantify the microhabitat of the stream by using macroinvertebrates systematically. In this study, eight wadeable streams and four non-wadeable streams were surveyed to identify the benthic macroinvertebrates in these various microhabitats. Among the physical environmental factors (current velocity, water depth, substrate), the particle size of the substrate was the most influential factor in the emergence of the Habitat Orientaion Groups. Among the HOGs, clinger and burrower were highly correlated with physical environment factors and showed the opposite tendency. The distribution of clinger and burrower according to the physical environmental factors showed two tendencies based on the current velocity (0.3 m/s) and water depth (0.4 m). In addition, the particle size of the substrate showed three trends (${\leq}-5.0$, -5.0 < mean diameter ${\leq}-2.0$, > -2.0). Based on the abundance tendency of these two HOGs, the microhabitats were classified into nine types, from a eupotamic microhabitat to a lentic microhabitat. Classification of the microhabitats using HOGs can be employed for creating microhabitats to promote biological diversity in future stream restoration plans.

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF

Aerosol Jet Deposition of $CuInS_2$ Thin Films

  • Fan, Rong;Kong, Seon-Mi;Kim, Dong-Chan;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2011
  • Among the semiconductor ternary compounds in the I-III-$VI_2$ series, $CulnS_2$ ($CulnSe_2$) are one of the promising materials for photovoltaic applications because of the suitability of their electrical and optical properties. The $CuInS_2$ thin film is one of I-III-$VI_2$ type semiconductors, which crystallizes in the chalcopyrite structure. Its direct band gap of 1.5 eV, high absorption coefficient and environmental viewpoint that $CuInS_2$ does not contain any toxic constituents make it suitable for terrestrial photovoltaic applications. A variety of techniques have been applied to deposit $CuInS_2$ thin films, such as single/double source evaporation, coevaporation, rf sputtering, chemical vapor deposition and chemical spray pyrolysis. This is the first report that $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) technique which is a novel and attractive method because thin films with high deposition rate can be grown at very low cost. In this study, $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) method which employs a nozzle expansion. The mixed fluid is expanded through the nozzle into the chamber evacuated in a lower pressure to deposit $CuInS_2$ films on Mo coated glass substrate. In this AJD system, the characteristics of $CuInS_2$ films are dependent on various deposition parameters, such as compositional ratio of precursor solution, flow rate of carrier gas, stagnation pressure, substrate temperature, nozzle shape, nozzle size and chamber pressure, etc. In this report, $CuInS_2$ thin films are deposited using the deposition parameters such as the compositional ratio of the precursor solution and the substrate temperature. The deposited $CuInS_2$ thin films will be analyzed in terms of deposition rate, crystal structure, and optical properties.

  • PDF