• Title/Summary/Keyword: substrate thickness

Search Result 1,915, Processing Time 0.029 seconds

Fabrication of Optically Encoded Images on Porous Silicon (다공성 실리콘을 이용한 암호화된 광학이미지 제작)

  • Koh, Young-Dae;Kim, Sung-Jin;Kim, Jong-Hyeon;Rheu, Seong-Ok;Bang, Hyeon-Seok;Jeong, Yun-Sik;Park, Bo-Kyeong;Sohn, Hong-Lae
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • Optical images on the porous silicon exhibiting Febry-Perot fringe pattern have been prepared by using an electrochemical etching of p-type silicon wafer (boron-doped,<100> orientation, resistivity $0.8{\sim}1.2m{\Omega}-cm$) and beam projector. The images remained in the substrate displayed an optical images correlating to the optical pattern and could be useful for optical data storage. A decrease in the effective optical thickness of the Febry-Perot layers was observed, indicative of a change in refractive index induced by exposing of porous silicon to the white light. This provides the ability to fabricate complex optical encoding in the surface of silicon.

Synthesis and Characterization of Large-Area and Highly Crystalline Tungsten Disulphide (WS2) Atomic Layer by Chemical Vapor Deposition

  • Kim, Ji Sun;Kim, Yooseok;Park, Seung-Ho;Ko, Yong Hun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.361.2-361.2
    • /
    • 2014
  • Transition metal dichalcogenides (MoS2, WS2, WSe2, MoSe2, NbS2, NbSe2, etc.) are layered materials that can exhibit semiconducting, metallic and even superconducting behavior. In the bulk form, the semiconducting phases (MoS2, WS2, WSe2, MoSe2) have an indirect band gap. Recently, these layered systems have attracted a great deal of attention mainly due to their complementary electronic properties when compared to other two-dimensional materials, such as graphene (a semimetal) and boron nitride (an insulator). However, these bulk properties could be significantly modified when the system becomes mono-layered; the indirect band gap becomes direct. Such changes in the band structure when reducing the thickness of a WS2 film have important implications for the development of novel applications, such as valleytronics. In this work, we report for the controlled synthesis of large-area (~cm2) single-, bi-, and few-layer WS2 using a two-step process. WOx thin films were deposited onto a Si/SiO2 substrate, and these films were then sulfurized under vacuum in a second step occurring at high temperatures ($750^{\circ}C$). Furthermore, we have developed an efficient route to transfer these WS2 films onto different substrates, using concentrated HF. WS2 films of different thicknesses have been analyzed by optical microscopy, Raman spectroscopy, and high-resolution transmission electron microscopy.

  • PDF

Enhancement of Methanol Gas Sensitivity of Cu Intermediate ITO Film Gas Sensors

  • Shin, Chang-Ho;Chae, Joo-Hyun;Kim, Yu-Sung;Jeong, Cheol-Woo;Kim, Dae-Il
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.267-270
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Cu/ITO (ICI) multilayer films were prepared on glass substrates with a reactive radio frequency (RF) magnetron sputter without intentional substrate heating, and then the influence of the Cu interlayer on the methanol gas sensitivity of the ICI films were considered. Although both ITO and ICI film sensors had the same thickness of 100 nm, the ICI sensors had a sandwich structure of ITO 50 nm/Cu 5 nm/ITO 45 nm. The ICI films showed a ten times higher carrier density than that of the pure ITO films. However, the Cu interlayer may also have caused the decrement of carrier mobility because the interfaces between the ITO and Cu interlayer acted as a barrier to carrier movement. Although the ICI films had two times a lower mobility than that of the pure ITO films, the ICI films had a higher conductivity of $3.6{\cdot}10^{-4}\;{\Omega}cm$ due to a higher carrier density. The changes in the sensitivity of the film sensors caused by methanol gas ranging from 50 to 500 ppm were measured at room temperature. The ICI sensors showed a higher gas sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the ICI film sensors have the potential to be used as improved methanol gas sensors.

In Situ Shrinkage and Stress Development for $\textrm{PbTiO}_3$, Films Prepared by Sol-gel Process (Sol-gel법으로 제조된 $\textrm{PbTiO}_3$ 박막의 온도에 따른 수축 및 응력거동)

  • Park, Sang-Myeon
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.735-739
    • /
    • 1999
  • In this study we investigated stress development and shrinkage of thickness for a single $PbTiO_3$(PT) layer prepared by sol-gel processing. Changes of microhardness for multideposited PT layers with temperatures are also monitored to understand the densification of thin films. Single PT layer shrank rapidly from room temperature to$ 220^{\circ}C$ yielding 83% of total shrinkage observed up to $500^{\circ}C$. A tensile stress of ~75MPa developed in an as-spun layer, and increased steadily beyond $130^{\circ}C$ until it reaches the maximum value of 147MPa at $250^{\circ}C$. The significant decrease of tensile stress in the film beyond $370^{\circ}C$ indicates that thermal expansion mismatch between the film and the substrate dominates the stress behavior in this temperature range. Microhardness of the multideposited coatings also increased rapidly above $300^{\circ}C$ regardless of the pyrolysis temperatures used. Large amount of perovskite phase formed in multideposited coatings after $550^{\circ}C$ may be due partly to enhanced homogeneous nucleation in the thicker coating.

  • PDF

The structural, optical and photocatalytic properties of $TiO_2$ thin films fabricated by do magnetron sputtering (직류 마그네트론 스퍼터링법으로 제조된 $TiO_2$ 박막의 구조적, 광학적 특성 및 광촉매 효과)

  • Lim, J.M.;Yang, H.H.;Kim, Y.J.;Park, J.Y.;Jeong, W.J.;Park, G.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.420-423
    • /
    • 2003
  • [ $TiO_2$ ] thin films were fabricated by DC magnetron sputtering system at by controlling deposition times, ratios of $Ar:O_2$ partial presser ratio and substrate conditions. And the surface, cross-section morphology, microstructure, and composition ratio of the films were analyzed by FE-SEM, TEM and XPS. Besides, the optical absorption and transmittance of the $TiO_2$ films were measured by a UV-VIS-NIR Spectrophotometer, and photocatalytic properties were studied by G C Analyzer & Data Analysis system. As the result, when $TiO_2$ thin film was made at deposition time of 120[min] and $Ar:O_2$ ratio of 60:40, the best structural and optical properties among many thin films could be accepted. The best results of properties were as follows: thickness; $360{\sim}370[nm]$, grain size; 40[m], gap between two peak binding energy, $5.8{\pm}0.05[eV]$ ($2p_{3/2}$ peak and $2p_{1/2}$ peak of Ti was show at $458.3{\pm}0.05[eV]$ and $464.1{\pm}0.05[eV]$ respectively), binding energy; $530{\pm}0.05\;[eV]$, opticalenergy band gap; 3.4[eV].

  • PDF

Deposition of Polytetrafluoroethylene Thin Films by IR-pulsed Laser Ablation (Nd:YAG 레이저에 의한 폴리테트라플루오르에틸렌 박막 증착)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • PTFE (polytetrafluoroethylene) thin films were prepared from the pellets of the graphite doped PTFE via pulsed laser ablation with 1064 nm Nd:YAG laser. The graphite powder converts the absorbed photon energy into thermal energy which is transmitted to nearby PTFE. The PTFE is decomposed by thermal process. The deposited films were transparent and crystalline. SEM (scanning electron microscopy) and AFM (atomic force microscopy) analyses indicated that the film surface morphology changed to fibrous structure with increasing thickness. The fluorine to carbon ratios of the film were 1.7 and molecular axis was parallel with (100) Si-wafer substrate. These results obtained by XPS (X-ray photoelectron spectroscopy), FTIR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction).

  • PDF

Study on the CPWG Antenna of 1.8GHz (1.8GHz 대역용 CPWG 안테나 연구)

  • Park, Yong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.259-264
    • /
    • 2016
  • In this study, the properties of a patch antenna fed by a coplanar waveguide with ground (CPWG) and design method were studied. The antenna was impedance-matched to the CPWG feedline by adjusting the width, length, and position of the patch. To improve the frequency properties of the CPWG type antenna, patch length, patch width, patch position, and ground distance were simulated using HFSS (High Frequency Structure Simulator) simulation program. A CPWG antenna of 1.8 GHz for LTE band was designed and fabricated by photolithography on an FR4 substrate (dielectric constant of 4.4 and thickness of 0.8 mm). The fabricated antenna was analyzed using a network analyzer. The measured results agree well with the simulations, which confirmed the validity of this study. The fabricated CPWG antenna showed a center frequency, minimum return loss and -10dB bandwidth of 1.8GHz, -32.1dB, 22MHz and $50.2{\Omega}$ respectively. The proposed antenna is expected to be applicable to the LTE band.

Manufacturing and Properties of Low Vacuum Plasma Sprayed W-Carbide Hybrid Coating Layer (진공 플라즈마 스프레이 공정을 이용한 W계 복합 코팅층의 제조 및 특성 연구)

  • Cho, Jin-Hyeon;Jin, Young-Min;Ahn, Jee-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.226-237
    • /
    • 2011
  • W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 ${\mu}M$ or above in thickness. As the substrate preheating temperature increased from $870^{\circ}C$ to $917^{\circ}C$, the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.

XPS study of NiO Growth on Ag(100) (Ag(001)에 성장된 NiO 극초박막의 화학 결함 연구)

  • Yang, Seol-Un;Seong, Shi-Jin;Kim, J.S.;Hwang, Han-Na;Hwang, C.C.;Chang, Young J.;Park, Soo-Hyon;Min, H.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.311-321
    • /
    • 2007
  • We have researched the chemical defects of NiO ultrathin films grown on Ag(001) by x-ray photoelectron spectroscopy. In particular, O 1s and Ni 2p spectra were analyzed consistently with control film thickness, $O_2\;and\;H_2O$ partial pressure and substrate temperature. As a result, we could identify each chemical defect. In addition, we suggest the optimum growth condition to minimize the defect density.

Epitaxial Growth of $CeO_2\;and\;Y_2O_3$ Buffer-Layer Films on Textured Ni metal substrate using RF Magnetron Sputtering (이축정렬된 Ni 금속모재에 RF 마그네트론 스퍼터링에 의해 증착된 $CeO_2$$Y_2O_3$ 완충층 박막 특성)

  • Oh, Y.J.;Ra, J.S.;Lee, E.G.;Kim, C.J.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.120-129
    • /
    • 2006
  • We comparatively studied the epitaxial growth conditions of $CeO_2$ and $Y_2O_3$ thin buffers on textured Ni tapes using rf magnetron sputtering and investigated the feasibility of getting a single mixture layer or sequential layers of $CeO_2$ and $Y_2O_3$ for more simplified buffer architecture. All the buffer layers were first deposited using the reducing gas of $Ar/4%H_2$ and subsequently the reactive gas mixture of Ar and $O_2$, The crystalline quality and biaxial alignment of the films were investigated using X-ray diffraction techniques (${\Theta}-2{\Theta},\;{\phi}\;and\;{\omega}\;scans$, pole figures). The $CeO_2$ single layer exhibited well developed (200) epitaxial growth at the condition of $10%\;O_2$ below an $450^{\circ}C$, but the epitaxial property was decreased with increasing the layer thickness. $Y_2O_3$ seldom showed optimum condition for (400) epitaxial growth. The sequential architecture of $CeO_2/Y_2O_3/CeO_2$ having good epitaxial property was achieved by sputtering at a temperature of $700^{\circ}C$ on the initial $CeO_2$ bottom layer sputtered at $400^{\circ}C$. Cracking of the sputtered buffer layers was seldom observed except the double layer structure of $CeO_2/Y_2O_3$.

  • PDF