• Title/Summary/Keyword: substrate spectrum

Search Result 303, Processing Time 0.02 seconds

Bacteriorhodopsin/Flavin Complex LB Films-Based Artificial Photoreceptor for Color Recognition (Bacteriorhodopsin과 flavin 복합 LB막을 이용한 색채인식기능의 인공감광소자)

  • Choi, Hyun-Goo;Jung, Woo-Chul;Min, Jun-Hong;Lee, Won-Hong;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.643-650
    • /
    • 1999
  • An artificial photoreceptor composed of bacteriorhodopsin(bR)/flavin complex Langmuir-Blodgett(LB) films was developed by mimicking the human visual system. bR and flavin molecules were deposited onto solid substrate by LB technique, and the deposition of two molecules was proved by UV/VIS absorption spectroscopy and atomic force microscopy(AFM). Based on AFM images and photocurrent generation from the LB films, the optimal conditions for device fabrication were determined. With a series of light illuminations, the generated photocurrent could be detected, and the response characteristics of two molecules could be clearly distinguished from each other. According to the obtained signal shapes, three distinctive regions could be found in the obtained action spectrum. Using a correlation between the photocurrent generation and the wavelength of the input light, it was possible to organize the basic rules to interpret the wavelength of the input light. It is concluded that the proposed artificial photoreceptor would e applicable to the bioelectronic device for color recognition.

  • PDF

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong Myungseak;Hong Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.244-252
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaS_2$ 단결정 박막 성장과 열처리 효과)

  • Moon Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.

Growth and optical characterization of $CuInSe_2$ single crystal thin film for solar cell application (태양전지용 $CuInSe_2$단결정 박막 성장과 광학적 특성)

  • 백승남;홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.202-209
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the $CuInSe_2$single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CuInSe_2$compound crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$single crystal thin films measured from Hall effect by van der Pauw method. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr. From the photoluminescence measurement on $CuInSe_2$single crystal thin film, we observed free exciton ($E_x$) existing only high quality crystal and neutral bound exciton ($A^{\circ}$, X) having very strong peak intensity. Then, the full-width-at-half-maximum (FWHM) and binding energy of neutral donor bound exciton were 7 meV and 5.9 meV, respectivity. By haynes rule, an activation energy of impurity was 59 meV.

Characterization of Nitrogen-Doped $TiO_2$ Thin Films Prepared by Metalorganic Chemical Vapor Deposition (유기금속 화학 기상증착법으로 실리콘 기판위에 증착된 질소치환 $TiO_2$ 박막의 특성분석)

  • 이동헌;조용수;이월인;이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1577-1587
    • /
    • 1994
  • TiO2 thin films with the substitution of oxygen with nitrogen were deposited on silicon substrate by metalorganic chemical vapor deposition (MOCVD) using Ti(OCH(CH3)2)4 (titanium tetraisopropoxide, TTIP) and N2O as source materials. X-ray diffraction (XRD) results indicated that the crystal structure of the deposited thin films was anatase TiO2 with only (101) plane observed at the deposition temperatures of 36$0^{\circ}C$ and 38$0^{\circ}C$, and with (101) and (200) plane at above 40$0^{\circ}C$. Raman spectroscopic results indicated that the crystal structure was anatase TiO2 in accordance with the XRD results without any rutile, fcc TiN, or hcp TiN structure. No fundamental difference was observed with temperature increase, but the peak intensity at 194.5 cm-1 increased with strong intensity at 143.0 cm-1 for all samples. The crystalline size of the films varied from 49.2 nm to 63.9 nm with increasing temperature as determined by slow-scan XRD experiments. The refractive index of the films increased from 2.40 to 2.55 as temperature increased. X-ray photoelectron spectroscopy (XPS) study showed only Ti 2s, Ti 2p, C 1s, O 1s and O 2s peaks at the surface of the film. The composition of the surface was estimated to be TiO1.98 from the quatitative analysis. In the bulk of the film Ti 2s, Ti 2p, O 1s, O 2s, N 1s and N 2s were detected, and Ti-N bonding was observed due to the substitution of oxygen with nitrogen. A satellite structure was observed in the Ti 2p due to the Ti-N bonding, and the composition of titanium nitride was determined to be about TiN1.0 from the position of the binding energy of Ti-N 2p3/2 and the quatitative analysis. The spectrum of Ti 2p energy level could be the sum of a 4, 5, or 6 Gaussian curve reconstruction, and the case of the sum of the 6 Gaussian curve reconstruction was physically most meaningful. From the results of Auger electron spectroscopy (AES), it was known that the composition was not varied significantly throughout the whole thickness of the film, and silicon oxide was not observed at the interface between the film and the substrate. The composition of the film was possible (TiO2)1-x.(TiN)x or TiO2-2xNx and in this experimental condition x was found to be about 0.21-0.16.

  • PDF

Growth and effect of thermal annealing for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Baek, Seung-Nam;Hong, Kwang-Joon;Kim, Jang-Bok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.189-197
    • /
    • 2006
  • A stoichiometric mixture of evaporating materials for $AgGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy(HWE) system. The source and substrate temperatures were $630^{\circ}C\;and\;420^{\circ}C$, respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501eV-(8.79x10^{-4}eV/K)T^2(T+250K)$. After the as-grown $AgGaSe_2$ single crystal thin films was annealed in Ag-, Se-, and Ga-atmospheres, the origin of point defects of $AgGaSe_2$ single crystal thin films has been investigated by the photoluminescence (PL) at 10K. The native defects of $V_{Ag},\;V_{Se},\;Ag_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaSe_2$ single crystal thin films to an optical p-type. Also, we confirmed that Ga in $AgGaSe_2$/GaAs did not form the native defects because Ga in $AgGaSe_2$ single crystal thin films existed in the form of stable bonds.

Growth and Characterization of $ZnGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)에 의한 $ZnGa_2Se_4$단결정 박막 성장과 특성에 관한 연구)

  • 장차익;홍광준;정준우;백형원;정경아;방진주;박창선
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2001
  • A stoichiometric mixture of evaporating materials for ZnGa₂Se₄single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa₂Se₄mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were 610℃ and 450℃, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa₂Se₄single crystal thin films measured from Hall effect by von der Pauw method are 9.63×10/sup 17/㎤ and 296 ㎠/V·s at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa₂Se₄single crystal thin film, we have found that the values of spin orbit splitting △so and the crystal field splitting Δcr were 251.9meV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on th ZnGa₂Se₄single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (A°, X) having very strong peak intensity. Then, the full-width-at-half-maximum (FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.

  • PDF

Photocurrent Study on the Splitting of the Valence Band and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon;Park, Jin-Sun;Lee, Bong-Ju;Jeong, Jun-Woo;Bang, Jin-Ju;Kim, Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.157-167
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuAlSe_{2}$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_{2}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_{2}$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}cm^{-3}$ and $295cm^{2}/V{\codt}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$ = 2.8382 eV - ($8.68{\circ}10^{-4}$ eV/K)$T^{2}$/(T + 155 K). The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_{2}$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $CuAlSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-}$, $B_{1-}$, and $C_{1-}$ exciton peaks for n = 1.

Study on Point Defect for $AgGaS_2$ Single Crystal Thin film Obtained by Photoluminescience Measurement Method (광발광 측정법에 의한 $AgGaS_2$ 단결정 박막의 점결함 연구)

  • Hong, Kwang-Joon;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.117-126
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C\;and\;440^{\circ}C$, respectively The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$. After the as-grown $AgGaS_2$, single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag},\;V_s,\;Ag_{int},\;and\;S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaS_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $AgGaS_2$ crystal thin films did not form the native defects because Ga in $AgGaS_2$ single crystal thin films existed in the form of stable bonds.

Influences of direction for hexagonal-structure arrays of lens patterns on structural, optical, and electrical properties of InGaN/GaN MQW LEDs

  • Lee, Kwang-Jae;Kim, Hyun-June;Park, Dong-Woo;Jo, Byoung-Gu;Oh, Hye-Min;Hwang, Jeong-Woo;Kim, Jin-Soo;Lee, Jin-Hong;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.153-153
    • /
    • 2010
  • Recently, to develop GaN-based light-emitting diodes (LEDs) with better performances, various approaches have been suggested by many research groups. In particular, using the patterned sapphire substrate technique has shown the improvement in both internal quantum efficiency and light extraction properties of GaN-based LEDs. In this paper, we discuss the influences of the direction of the hexagonal-structure arrays of lens-shaped patterns (HSAPs) formed on sapphire substrates on the crystal, optical, and electrical properties of InGaN/GaN multi-quantum-well (MQW) LEDs. The basic direction of the HSAPs is normal (HSAPN) with respect to the primary flat zone of a c-plane sapphire substrate. Another HSAP tilted by 30o (HSAP30) from the HSAPN structure was used to investigate the effects of the pattern direction. The full width at half maximums (FWHMs) of the double-crystal x-ray diffraction (DCXRD) spectrum for the (0002) and (1-102) planes of the HSAPN are 320.4 and 381.6 arcsecs., respectively, which are relatively narrower compared to those of the HSP30. The photoluminescence intensity for the HSAPN structure was ~1.2 times stronger than that for the HSAP30. From the electroluminescence (EL) measurements, the intensity for both structures are almost similar. In addition, the effects of the area of the individual lens pattern consisting of the hexagonal-structure arrays are discussed using the concept of the planar area fraction (PAF) defined as the following equation; PAF = [1-(patterns area/total unit areas)] For the relatively small PAF region up to 0.494, the influences of the HSAP direction on the LED characteristics were significant. However, the direction effects of the HSAP became small with increasing the PAF.

  • PDF