• Title/Summary/Keyword: substrate spectrum

Search Result 303, Processing Time 0.024 seconds

A Study on the Active site of Glucoamylase from Aspergillus shirousamii

  • Lee Kuly Dong;Yang Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.107-111
    • /
    • 1989
  • Glucoamylase was inactivated with 1-ethyl-2-(dimethylaminopropyl)carbodiimide (EDC) at pH 5.0. Time course of inactivation of glucoamylase was at least biphasic. From the results of the titration of SH groups with Ellman's reagent and hydroxylamine treatment at pH 7.0, it was concluded that the crucial sites of modification were carboxyl groups of glucoamylase. The CD spectrum of EDC-modified glucoamylase suggested that the gross conformation of the native enzyme was retained. The inactivation of glucoamylase was reduced remarkably in the presence of maltose. The logarithm of the half-life of the inactivation of glucoamylase by EDC was a linear function of log[EDC] in each stage indicating that one carboxyl group among the modified ones was crucial for inactivation of glucoamylase. The change in the binding affinity due to modification was determined by using an affinity column. It indicates that the carboxyl group of glucoamylase seems to play a role in both, the catalysis and substrate binding in the first stage, but in the second stage the binding affinity is recovered almost up to that of native enzyme.

A New Functional Model Complex of Extradiol-cleaving Catechol Dioxygenases: Properties and Reactivity of [$Fe^{II}$(BLPA)DBCH]BPh₄

  • Lim, Ji H.;Park, Tae H.;이호진;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1428-1432
    • /
    • 1999
  • [Fe$^{II}$(BLPA)DBCH]BPh₄ (1), a new functional model for the extradiol-cleaving catechol dioxygenases, has been synthesized, where BLPA is bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and DBCH is 3,5-di-tert-butylcatecholate monoanion. ¹H NMR and EPR studies confirm that 1 has a high-spin Fe(II) (S = 2) center. The electronic spectrum of 1 exhibits one absorption band at 386 nm, showing the yellow color of the typical [Fe$^{II}$(BLPA)] complex. Upon exposure to O₂, 1 is converted to an intense blue species within a minute. This blue species exhibits two intense bands at 586 and 960 nm and EPR signals at g = 5.5 and 8.0 corresponding to the high-spin Fe(III) complex (S = 5/2, E/D = 0.11). This blue complex further reacts with O₂ to be converted to (μ-oxo)Fe$^{III}_2$ complex within a few hours. Interestingly, 1 affords intradiol cleavage (65%) and extradiol cleavage (20%) products after the oxygenation. It can be suggested that 1 undergoes two different oxygenation pathways. The one takes the substrate activation mechanism proposed for the intradiol cleavage products after the oxidation of the $Fe^II\;to\;Fe^{III}$. The other involves the direct attack of O₂ to $Fe^{II}$ center, forming the $Fe^{III}$-superoxo intermediate which can give rise to the extradiol cleavage products. 1 is the first functional Fe(II) complex for extradiol-cleaving dioxygenases giving extradiol cleavage products.

Terahertz Generation by a Resonant Photoconductive Antenna

  • Lee, Kanghee;Lee, Seong Cheol;Kim, Won Tae;Park, Jagang;Min, Bumki;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-379
    • /
    • 2020
  • In this study, we investigate terahertz (THz) generation by a photoconductive antenna with electrodes in the shape of split-ring resonators. According to our theoretical investigation based on a lumped-circuit model, the inductance of this electrode structure leads to resonant behavior of the photo-induced current. Hence, near the resonance frequency the spectral components generated by a resonant photoconductive antenna can be greater than those produced by a non-resonant one. For experimental verification, a resonant photoconductive antenna, which possesses a resonance mode at 0.6 THz, and a non-resonant photoconductive antenna with stripe-shaped electrodes were fabricated on a semi-insulating GaAs substrate. The THz generation by both of the photoconductive antennas demonstrated a good agreement with the theoretically expected results. The observed relationship between the resonant electrodes of the photoconductive antenna and the generated THz spectrum can be further employed to design a narrow-band THz source with an on-demand frequency.

Recent Progress and Prospect of Luminescent Solar Concentrator (발광형 태양광 집광기 최신 연구 동향)

  • Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

Comparative Study of Undoped and Nickel-Doped Molybdenum Oxide Photoanodes for PEC Water Splitting

  • Garcia-Garcia, Matias
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.377-389
    • /
    • 2022
  • The current global energy supply depends heavily on fossil fuels. This makes technology such as direct water splitting from harvesting solar energy in photoelectrochemical (PEC) systems potentially attractive due to its a promising route for environmentally benign hydrogen production. In this study, undoped and nickel-doped molybdenum oxide photoanodes (called photoanodes S1 and S2 respectively) were synthesized through electrodeposition by applying -1.377 V vs Ag/AgCl (3 M KCl) for 3 hours on an FTO-coated glass substrate immersed in molibdatecitrate aqueous solutions at pH 9. Scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were used for microstructural and compositional characterizations of the photoanodes. In addition, the optical and photoelectrochemical characterizations of these photoanodes were performed by UV-Visible spectroscopy, and linear scanning voltammetry (LSV) respectively. The results showed that all the photoanodes produced exhibit conductivity and catalytic properties that make them attractive for water splitting application in a photoelectrochemical cell. In this context, the photoanode S2 exhibited better photocatalytic activity than the photoanode S1. In addition, photoanode S2 had the lowest optical band-gap energy value (2.58 eV), which would allow better utilization of the solar spectrum.

Epitaxial growth of yttrium-stabilized HfO$_2$ high-k gate dielectric thin films on Si

  • Dai, J.Y.;Lee, P.F.;Wong, K.H.;Chan, H.L.W.;Choy, C.L.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.63.2-64
    • /
    • 2003
  • Epitaxial yttrium-stabilized HfO$_2$ thin films were deposited on p-type (100) Si substrates by pulsed laser deposition at a relatively lower substrate temperature of 550. Transmission electron microscopy observation revealed a fixed orientation relationship between the epitaxial film and Si; that is, (100)Si.(100)HfO$_2$ and [001]Si/[001]HfO$_2$. The film/Si interface is not atomically flat, suggesting possible interfacial reaction and diffusion, X-ray photoelectron spectrum analysis also revealed the interfacial reaction and diffusion evidenced by Hf silicate and Hf-Si bond formation at the interface. The epitaxial growth of the yttrium stabilized HfO$_2$ thin film on bare Si is via a direct growth mechanism without involoving the reaction between Hf atoms and SiO$_2$ layer. High-frequency capacitance-voltage measurement on an as-grown 40-A yttrium-stabilized HfO$_2$ epitaxial film yielded an dielectric constant of about 14 and equivalent oxide thickness to SiO$_2$ of 12 A. The leakage current density is 7.0${\times}$ 10e-2 A/$\textrm{cm}^2$ at 1V gate bias voltage.

  • PDF

Sulfuric Acid Catalytic Conversion to Levulinic Acid from Cellulosic Biomass (섬유소계 바이오매스로부터 황산 촉매를 이용한 레블린산 생산)

  • Hyeong-Gyun Ahn;Seungmin Lee;Yi-Ra Lim;Hyunjoon Kim;Jun Seok Kim
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • Levulinic acid (LA) derived from cellulosic biomass, serves a crucial intermediate that can be used in various chemical conversions. This study focused on optimizing the production of LA using two types of pretreated rice husk (de-ashed and delignificated cellulosic biomass) in a batch reaction system through catalytic conversion with sulfuric acid. To determine the optimal conditions, the conversions of glucose and α-cellulose were examined to compare the effects of pretreatment on the rice husk. The experimental parameters covered a broad spectrum, including temperatures ranging from 140℃ to 200℃, a reaction time was up to 600 minutes, and a substrate to catalyst (acid solution) ratio of 100 g/L. The highest LA yield was 44.8%, achieved from de-ashed rice husk with 3.0 wt.% of sulfuric acid at 180℃ and with a reaction time of 180 minutes. In the case of the delignificated rice husk, a LA yield of 43.6% was obtained with 3.0 wt.% of sulfuric acid at 200℃ and with reaction time of 30 minutes.

Oxide perovskite crystals type ABCO4:application and growth

  • Pajaczkowska, A.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.258-292
    • /
    • 1996
  • In the last year great interest appears to YBCO thin films preparation on different substrate materials. Preparation of epitaxial film is a very difficult problem. There are many requirements to substrate materials that must be fullfilled. Main problems are lattice mismatch (misfit) and similarity of structure. From paper [1] or follows that difference in interatomic distances and angles of substrate and film is mire important problem than similarity of structure. In this work we present interatomic distances and angle relations between substrate materials belonging to ABCO4 group (where A-Sr or Ca, B-rare earth element, C-Al or Ga) of different orientations and YBCO thin films. There are many materials used as substrates for HTsC thin films. ABCO4 group of compounds is characterized by small dielectric constants (it is necessary for microwave applications of HTsC films), absence of twins and small misfit [2]. There most interesting compounds CaNdAlO4, SrLaAlO4 and SrLaGaO4 were investigated. All these compounds are of pseudo-perovskite structure with space group 14/mmm. This structure is very similar to structure of YBCO. SLG substrate has the lowest misfit (0.3%) and dielectric constant. For preparation of then films of substrates of this group of compound plane of <100> orientation are mainly used. Good quality films of <001> orientations are obtained [3]. In this case not only a-a misfit play role, but c-3b misfit is very important too. Sometimes, for preparation of thin films substrates of <001> and <110> orientations were manufactured [3]. Different misfits for different YBCO faces have been analyzed. It has been found that the mismatching factor for (100) face is very similar to that for (001) face so there is possibility of preparation of thin films on both orientations. SrLaAlO4(SLA) and SrLaGaO4(SLG) crystals of general formula ABCO4 have been grown by the Czochralski method. The quality of SLA and SLG crystals strongly depends on axial gradient of temperature and growth and rotation rates. High quality crystals were obtained at axial gradient of temperature near crystal-melt interface lower than 50℃/cm, growth rate 1-3 mm/h and the rotation rate changing from 10-20pm[4]. Strong anisotropy in morphology of SLA and SLG single crystals grown by the Czochralski method is clearly visible. On the basics of our considerations for ABCO4 type of the tetragonal crystals there can appear {001}, {101}, and {110} faces for ionic type model [5]. Morphology of these crystals depend on ionic-covalent character of bonding and crystal growth parameters. Point defects are observed in crystals and they are reflected in color changes (colorless, yellow, green). Point defects are detected in directions perpendicular to oxide planes and are connected with instability of oxygen position in lattice. To investigate facets formations crystals were doped with Cr3+, Er3+, Pr3+, Ba2+. Chromium greater size ion which is substituted for Al3+ clearly induces faceting. There appear easy {110} faces and SLA crystals crack even then the amount of Cr is below 0.3at.% SLG single crystals are not so sensitive to the content of chromium ions. It was also found that if {110} face appears at the beginning of growth process the crystal changes its color on the plane {110} but it happens only on the shoulder part. The projection of {110} face has a great amount of oxygen positions which can be easy defected. Pure and doped SLA and SLG crystals measured by EPR in the<110> direction show more intensive lines than in other directions which allows to suggest that the amount of oxygen defects on the {110} plane is higher. In order to find the origin of colors and their relation with the crystal stability, a set of SLA and SLG crystals were investigated using optical spectroscopy. The colored samples exhibit an absorption band stretching from the UV absorption edge of the crystal, from about 240 nm to about 550 m. In the case of colorless sample, the absorption spectrum consists of a relatively weak band in the UV region. The spectral position and intensities of absorption bands of SLA are typical for imperfection similar to color centers which may be created in most of oxide crystals by UV and X-radiation. It is pointed out that crystal growth process of polycomponent oxide crystals by Czochralski method depends on the preparation of melt and its stoichiometry, orientation of seed, gradient of temperature at crystal-melt interface, parameters of growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth (rotation and pulling rate) and control of red-ox atmosphere during seeding and growth. Growth parameters have an influence on the morphology of crystal-melt interface, type and concentration of defects.

  • PDF

Studies on the ${\beta}-Tyrosinase$ -Part 2. On the Synthesis of Halo-tyrosine by ${\beta}-Tyrosinase$- (${\beta}-Tyrosinase$에 관한 연구 -제2보 ${\beta}-Tyrosinase$에 의한 Halogen화(化) Tyrosine의 합성(合成)-)

  • Kim, Chan-Jo;Nagasawa, Toru;Tani, Yoshiki;Yamada, Hideaki
    • Applied Biological Chemistry
    • /
    • v.22 no.4
    • /
    • pp.198-209
    • /
    • 1979
  • L-Tyrosine, 2-chloro-L-tyrosine, 2-bromo-L-tyrosine, and 2-iodo-L-tyrosine were synthesized by ${\beta}-tyrosinase$ obtained from cells of Escherichia intermedia A-21, through the reversal of the ${\alpha},{\beta}-elimination$ reaction, and their molecular structures were analyzed by element analysis, NMR spectroscopy, mass spectrometry and IR spectroscopy. Rates of synthesis and hydrolysis of halogenated tyrosines by ${\beta}-tyrosinase$, inhibition of the enzyme activity by halogenated phenols, and effects of addition of m-bromophenol on the synthesis of 2-bromotyrosine were determined. The results obtained were as follows: 1) In the synthesis of halogenated tyrosines, the yield of 2-chlorotyrosine from m-chlorophenol were approximately 15 per cent, that of 2-bromotyrosine from m-bromophenol 13.8 per cent, and that of 2-iodotyrosine from m-iodophenol 9.8 per cent. 2) Rate of synthesis of halogenated tyrosines by ${\beta}-tyrosinase$ was slower than that of tyrosine and the rates were decreased in the order of chlorine, bromine and iodine, that is, by increasing the atomic radius. Relative rate of 2-chlorotyrosine synthesis was determined to be 28.2, that of 2-bromotyrosine to be 8.13, and that of 2-iodotyrosine to be 0.98, respectively, against 100 of tyrosine. However 3-iodotyrosine was not synthesized by the enzyme. 3) The relative rate of 2-chlorotyrosine hydrolysis by ${\beta}-tyrosinase$ was 70.7, that of 2-bromotyrosine was 39.0, and that of 2-iodotyrosine was 12.6 against 100 of tyrosine, respectively. The rate of hydrolysis appeared to be decreased in the order of chlorine, bromine and iodine, that is, by increasing the atomic radius or by decreasing the electronegativity. But 3-iodotyrosine was not hydrolyzed by the enzyme. 4) The activity of ${\beta}-tyrosinase$ was inhibited by phenol markedly. Of the halogenated phenols, o-, or m-chlorophenol and o-bromophenol gave marked inhibition on the enzyme action, however inhibition by iodophenol was not strong. Plotting by Lineweaver-Burk method, a mixed-type inhibition by m-chlorophenol was observed and its Ki value was found to be $5.46{\times}10^{-4}M$. 5) During the synthesizing reaction of 2-bromotyrosine by the enzyme, sequential addition of substrate which was m-bromophenol with time intervals and in a small amount resulted in better yield of the product. 6) The halogenated tyrosines which were produced by ${\beta}-tyrosinase$ from pyruvate, ammonia and m-halogenated phenols were analysed to determine their molecular structures by element analysis, NMR spectroscopy, mass spectrometry, and IR spectroscopy. The result indicated that they were 2-chloro-L-tyrosine, 2-bromo-L-tyrosine, and 2-iodo-L-tyrosine, respectively.

  • PDF

Molecular Orientation of Evaporated Pentacene Film on Polyimide Alignment Layer (폴리이미드 배향막에 증착된 Pentacene 분자의 배향 연구)

  • Kim Beom-Kyung;Kim Do-Hoi;Chung Jae-Sun;Kim Young-Ju;Seo In-Seon;Kwon Soon-Ki;Song Ki-Gook
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.362-366
    • /
    • 2006
  • It was found by polarized FTIR spectroscopic studies that pentacene molecules are arranged with their molecular axes perpendicular to the substrate surface when pentacene films are deposited on a polyimide alignment layer. The ring plane in a pentacene molecule is arranged parallel to the rubbing direction of the polyimide alignment film while no specific arrangement of vertically deposited pentacene molecules was found for the film without rubbing. The pentacene band at $1296cm^{-1}$ which has a transition dipole moment parallel to the ring plane is much stronger in a polarized IR spectrum of parallel to the rubbing direction, whereas the band at $908cm^{-1}$ whose transition dipole align normal to the ring plane shows much stronger intensity in a spectrum of perpendicular to the rubbing direction. These findings indicate that orientation of polyimide chains affects the arrangement of pentacene molecules when they are deposited on a polyimide alignment film.