• 제목/요약/키워드: substrate moisture content

Search Result 81, Processing Time 0.03 seconds

Monitoring on the Soils and Plant Growth in Modular Sloped Rooftop Greening System (모듈형 경사지붕 녹화시스템의 토양과 식물생육 모니터링)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.5
    • /
    • pp.53-67
    • /
    • 2011
  • The major objective of this study was to quantify the effects of substrate depth and substrate composition on the development of sedum etc., in a sloped rooftop (6 : 12 pitch) environment during a 4-year period. The experiment was conducted from 2006 October to 2010 December under several conditions without soil erosion control : two substrate depth (5cm, 10cm), four substrate composition (A5N3C2, A3N3C4, A6C4, G5L3C2: A: artificial lightweight soil, N : natural soil, G : granite decomposed soil, C : leave composite, L : loess), four sloped roof direction ($E40^{\circ}W$, $W40^{\circ}N$, $S40^{\circ}W$, $N40^{\circ}E$). In this experiment 4 sedum etc., were used: Sedum sarmentosum, Sedum kamtschaticum, Sedum rupestre, Sedum telephium, flowering herbs (mixed seed : Taraxacum platycarpum, Lotus corniculatus, Aster yomena, Aster koraiensis), western grasses (mixed seed : Tall fescue, Creeping redfescue, Bermuda grass, Perennial ryegrass). The establishment factor had two levels : succulent shoot establishment (sedum), seeding (flowering herbs, western grasses). 1. Enkamat, as it bring about top soil exfoliation, was unsuitable material for soil erosion control. 2. Sedum species exhibited greater growth at a substrate depth of 10cm relative to 5cm. All flowering herbs and western grasses established only at a substrate depth of 5cm were died. A substrate depth of 5cm was not suited in sloped rooftop greening without maintenance. If additional soil erosion control will be supplemented, a substrate depth of 10cm in sloped rooftop greening without maintenance was considered suitable. 3. For all substrate depth and composition, the most abundant species was Sedum kamtschaticum. The percentage of surviving Sedum kamtschaticum was 73.4% at a substrate depth of 10cm in autumn 2007 one year after the roof vegetation had been established. But the percentage of surviving other sedum were 33.3%~51.9%, therefor mulching for soil erosion control was essential after rooftop establishment in extensive sloped roof greening was proved. To raise the ratio of plant survival, complete establishment of plant root at substrate was considered essential before rooftop establishment. 4. There was a significant interaction between biomass and substrate moisture content. There were also a significant difference of substrate moisture and erosion among substrate composition. The moisture content of A6C4 was highest, the resistance to erosion of A5N3C2 was highest among substrate composition. The biomass of plants were not significantly higher in A5N3C2 and A6C4 relative to A3N3C4 and G5L3C2, For substrate moisture and erosion resistance, A5N3C2 and A6C4 were considered suitable in sloped rooftop greening without maintenance. 5. There were significant difference among roof slope direction on the substrate moisture. Especially, the substrate moisture content of $S40^{\circ}W$ was lower relative to that of $N40^{\circ}E$, that guessed by solar radiation and erosion.

Mycelial growth of Lentinula edodes in response to different mixing time, pressure intensity, and substrate porosity

  • Chang, Hyun You;Seo, Geum Hui;Lee, Yong Kuk;Jeon, Sung Woo
    • Journal of Mushroom
    • /
    • v.15 no.4
    • /
    • pp.164-167
    • /
    • 2017
  • Biological efficiency (BE), the ratio of fresh mushrooms harvested per dry substrate weight, expressed as the percentage of Lentinula edodes, also known as shiitake, was determined using the 'Sanjo 701' strain stored in the Department of Mushroom at the Korea National College of Agriculture and Fisheries. The mycelia were grown in glass columns with varying levels of moisture content and varying mixing periods of 0.5, 1, 2, and 3 hours. The substrate was sterilized using a steam pressure autoclave sterilizer at normal and high pressure to avoid contamination. The results showed that mycelial growth (126 mm/15 days) was optimized at 55% moisture content. The best mycelial growth of 117 mm/15 days was obtained with 2 hours of mixing time. Normal pressure sterilization yielded better results with mycelial growth of 96 mm/15 days at $100^{\circ}C$ compared to 88 mm /15 days with sterilization at $121^{\circ}C$. Mycelial density was higher, i.e. 3(+++), with normal pressure sterilization compared to 2(++) with high pressure sterilization. Furthermore, sawdust mixed with 5% woodchips increased the substrate porosity and yielded higher mycelial growth. Thus, we demonstrated that the optimum harvest or potential increased yield of shiitake can be obtained by modulating moisture content, mixing time, and substrate porosity.

Fuzzy Logic Control of Rotating Drum Bioreactor for Improved Production of Amylase and Protease Enzymes by Aspergillus oryzae in Solid-State Fermentation

  • Sukumprasertsri, Monton;Unrean, Pornkamol;Pimsamarn, Jindarat;Kitsubun, Panit;Tongta, Anan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.335-342
    • /
    • 2013
  • In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.

Production of red pigments by Monascus purpureus in solid-state culture

  • Park, Hae-Yeon;Lee, Beom-Gyu;Jeong, Uk-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.315-316
    • /
    • 2001
  • In this study various nutritional and environmental parameters such as, initial moisture content, pH. inoculum size, air rate, sample size and nutrient supplement that influence pigment production were evaluated in solid-state cultures. optimum initial moisture content and pH were determined to be 50% and 6.0, respectively. The supplement of the substrate with different carbon, nitrogen, and mineral source reveals a more inhibitive effect as the substrate concentration increase. optimum aeration rate was determined to be 2vvm in flask culture. The maximum amount of red pigment, 3500 OD/g dried fermented rice, was obtained in optimum conditions which is obtained in solid flask culture.

  • PDF

Production of Red Pigments by Monascus purpureus in Solid-state Culture

  • Lee Bum-Kyu;Piao Hai Yan;Chung Wook-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.21-25
    • /
    • 2002
  • To maximize and sustain the productivity of Monascus pigments, various environmental and nutritional parameters, such as the initial moisture content, pH, inoculum size, sample size, and nutrient supplement, that influence pigment production were evaluated in solid-state cultures as follows: initial moisture content, $50\%;$ pH, 6.0; inoculum size $1\;\times\;10^4$ spore cells $(grams\;of\;dry\;solid\;substrate)^{-1};$ sample size, 300 g. All supplementary nutrients (carbon, nitrogen, and mineral sources) added has inhibitory effects on the cell growth and red pigment production. In open tray culture the maximum biomass yield and specific productivity of red pigments were 223 mg DCW $(grams\;of\;initial\;dry\;substrate)^{-1}$ and, $47.6\;OD_{500}\;(DCW\;grams)^{-1}h^h{-1}$ respectively.

Comparison of Adhesion Performance According to Concrete Moisture Content of Primer Mixed with Cement and Modified Polymer (시멘트와 변성 폴리머를 혼합한 프라이머의 콘크리트 함수율에 따른 부착성능 비교)

  • Kang, Hyo-Jin;An, Ki-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.231-232
    • /
    • 2019
  • In this study, primers were prepared by mixing cement and modified polymer, and the adhesion to the substrate surface was enhanced by using cement which is the same material as the basement outer wall. The improved primer is used to verify the adhesion performance of the substrate in wet concrete environments.

  • PDF

Analysis of Physical and Chemical Properties of Perlite Substrate (펄라이트 배지의 물리성과 화학성 분석)

  • 조영렬;손정익
    • Journal of Bio-Environment Control
    • /
    • v.9 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • This study aims at analyzing physical and chemical properties of perlite substrate. Particles of substrate were divided into five categories In size: gravel, very-coarse, coarse, medium and fine grade. Particles of very-coarse and greater grades in perlite substrate occupied 98.5% of total particles. The air phase of total particles was distributed between 76.8% and 87.7% with especially showing that of very-coarse grade was lower than that of coarse or smaller one. However, the liquid and solid phases were vice versa. The cation exchange capacity (CEC) measured was highest in the fine grade. In drainage experiments, the water being drained from the substrate increased with the ratio of drain area, and the 65~70% of total water reduced within five minutes after irrigation. The drained volume was proportional to the depth of the substrate, which contained about 2mL.cm$^2$:by depth (cm). Due to quick reduction of the water in the substrate, the pF value increased in four minutes after irrigation and showed the highest negative correlation ($R^2$=0.997) with the moisture content of the substrate. The physical and chemical properties including drainage characteristics analyzed in this study can be, therefore, utilized to control the moisture content of perlite substrate, efficiently.

  • PDF

Quality characteristics of improvement pellet nuruk inoculated from Aspergillus luchuensis 34-1

  • Jung, Eui-Hyoun;Mun, Ji-Young;Kim, So-Young;Yeo, Soo-Hwan
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.103-109
    • /
    • 2018
  • Aspergillus luchuensis 34-1 was inoculated into wheat pellets with different conditions of raw materials to produce nuruk. The degree of substrate reactivity improvement of steam treated raw materials compared with that of non-heat treated was analyzed. The water content of the pellet was adjusted to 25% and 35%, and steam treatment for 10 minutes improved the substrate reactivity at 2.1-fold and 3.1-fold, and sterilization was also possible. The characteristics of improvement pellet nuruk were investigated according to the degree of crushing and water content of raw materials according to the temperatures and humidities ($23^{\circ}C$, $30^{\circ}C$ and RH 60%, RH 80%). The pH of the pellet nuruk was higher depending on the temperature, humidity and moisture content of the koji were lower, and the pH of the flour-pellet nuruk was lower than that of 2 mm milling wheat-pellet nuruk according to milling degree. It can be seen that the milling degree affects the growth of mold. The acidity and amino acid were generally higher as fermentation time increased. Also, the higher the incubation temperature, humidity and moisture content, the higher the value. Glucoamylase activity was significantly the highest in moisture content 35% D2b nuruk, cultured at $30^{\circ}C$ and 80% RH for 38 hours. This is higher than the previous reports on glucoamylase of rice-koji or commercial nuruk using fungi isolated from traditional nuruk. From these study, it is expected that making of improvement pellet nuruk would save the fermentation time considerably compared with traditional nuruks.

Water Absorption Characteristics of Substrate with Physical Properties of wick in Subirrigation System Using wick (심지형 저면관수시스템의 심지의 물리적 성질에 따른 수분흡수 특성)

  • Dong Ho Jung;Jung Eek Son
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.41-42
    • /
    • 2001
  • The objectives of this study were to investigate the effect of the physical properties of wick on the water absorption of substrate. Physical properties of wick in this study were cotton composition, width and length. The water Infiltration rate through the wick was 0.24 ㎝/s at 90 -95% cotton content, which was faster than at 80-85% (0.13 cm/s) and 70-75% (0.08 cm/s). As the cotton content increased, the water absorption of substrate became greater : the amount of absorbed water was about 5-7g higher at 90-95% than at 80-85% and 70-75% at a wick width of 1 ㎝, the velocity of water absorption through the wick was fastest with 0.25 ㎝ㆍs/sup -1/. The amount of absorbed water was higher at 3 ㎝ than at 1 and 2 ㎝. However, the water absorption rate through the cross - sectional area of wick (g H₂O /㎠/hr) was higher at a wick width of 2 ㎝ than at those of 1 and 3 ㎝. The amount of absorbed water in the substrate was higher at 2 : 1 than at 1 : 1 (length in substrate : length out of substrate). Absorbed water amount was larger at 30-40% initial moisture content than any other treatment.

  • PDF

A Novel Medium for the Enhanced Production of Cyclosporin A by Tolypocladium inflatum MTCC 557 Using Solid State Fermentation

  • Survase, Shrikant A.;Shaligram, Nikhil S.;Pansuriya, Ruchir C.;Annapure, Uday S.;Singhal, Rekha S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.462-467
    • /
    • 2009
  • Cyclosporin A (CyA) produced by Tolypocladium inflatum is a promising drug owing to its immunosuppressive and antifungal activities. From an industrial point of view, the necessity to obtain a suitable and economic medium for higher production of CyA was the aim of this work. The present study evaluated the effect of different fermentation parameters in solid state fermentation, such as selection of solid substrate, hydrolysis of substrates, initial moisture content, supplementation of salts, additional carbon, and nitrogen sources, as well as the inoculum age and size, on production of CyA by Tolypocladium inflatum MTCC 557. The fermentation was carried out at $25{\pm}2^{\circ}C$ for 9 days. A combination of hydrolyzed wheat bran flour and coconut oil cake (1:1) at 70% initial moisture content supported a maximum production of $3,872{\pm}156\;mg$ CyA/kg substrate as compared with $792{\pm}33\;mg/kg$ substrate before optimization. Furthermore, supplementation of salts, glycerol (1% w/w), and ammonium sulfate (1% w/w) increased the production of CyA to $5,454{\pm}75\;mg/kg$ substrate. Inoculation of 5 g of solid substrate with 6 ml of 72-h-old seed culture resulted in a maximum production of $6,480{\pm}95\;mg$ CyA/kg substrate.