• Title/Summary/Keyword: substrate inhibition

Search Result 449, Processing Time 0.024 seconds

Insulin receptor substrate 2: a bridge between Hippo and AKT pathways

  • Jeong, Sun-Hye;Lim, Dae-Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.209-210
    • /
    • 2018
  • NAFLD induces the development of advanced liver diseases such as NASH and liver cancer. Therefore, understanding the mechanism of NAFLD development is critical for its prevention and treatment. Ablation of PTEN or Hippo pathway components induces liver cancer in a murine model by hyperactive AKT or YAP/TAZ, respectively. Although the regulation of these two pathways occurs in the same hepatocyte, the details of crosstalk between Hippo-YAP/TAZ and PTEN-AKT pathways in liver homeostasis and tumorigenesis still remain unclear. Here, we found that depletion of both PTEN and SAV1 in liver promotes spontaneous NAFLD and liver cancer through hyperactive AKT via YAP/TAZ-mediated up-regulation of IRS2 transcription. Conversely, NAFLD is rescued by both ablation of YAP/TAZ and activation of the Hippo pathway. Furthermore, human HCC patients with NAFLD showed strong correlation between YAP/TAZ and IRS2 or phospho-AKT expression. Finally, the inhibition of AKT by MK-2206 treatment attenuates NAFLD development and tumorigenesis. Our findings indicate that Hippo pathway interacts with AKT signaling during the intervention with IRS2 to prevent NAFLD and liver cancer.

Inhibitory Activity on Monoamine Oxidase of Chrysanthemum indicum L. (감국의 Monoamine Oxidase 저해활성)

  • Chang, Eun-Ju;Choi, Dong-Kug;Park, Tae-Kyu;Hwang, Keum-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.1
    • /
    • pp.27-30
    • /
    • 2007
  • We examined the inhibitory activities against monoamine oxidase (MAO) of Chrysanthemum indicum L. in vitro and in vivo methods. Methanolic extract of C. indicum showed significant inhibitory activities on MAO-A that were prepared from rat brain in vitro. The inhibitory activities were measured by serotonin as a substrate. The $IC_{50}$ value of methanolic extract of C. indicum was 0.24 mg/ml for the inhibition of MAO-A. The ethylacetate fraction of methanolic extract of C. indicum exhibited the best activity toward MAO-A with $IC_{50}$ value of 0.05 mg/ml in vitro. It was observed that those activities in vivo tests have different tendency each other. Ethanolic extract of C. indicum was have no effect on rat MAO by the oral administration (p<0.05). However, MAO inhibitory activities of ethanolic extract of C. indicum by the oral administration have similar tendency to those of iproniazid. Consequently, we suggest that C. indicum may have the effects on the inhibitory activities against MAO both in vitro and in vivo. These results indicates that the C. indicum extract has properties indicative of potential neuroprotective ability.

Immobilization of Trigonopsis variabilis and Conversion of Cephalosporin C to 7$\beta$-(4-Caboxybutanamido)Cephalosporanic Acid (Trigonopsis variabilis의 고정화 및 Cephalosporin C로부터 7$\beta$-(4-Carbohybutanamido)Cephalosporanic Acid의 전환)

  • 김종균;임재윤
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • An immobilized Trigonopsis variabilis cells having an high activity of D-amino acid oxidase(DAO) was used to convert CPC into GL-7-ACA. The optimal pH of the reaction system was 8.0-8.5, and the optimal temperature was 40$\circ$C. When immobilized cell was used repeatedly in semi-batchwise reaction, the system retained 80% of the initial activity after used of 12 times for over 12 hours. The storage stability of the immobilized cell was maintained for 30 days at 4$\circ$C. The CPC concentration for the maximal reaction rate was about 30 mM and 40 mM for free and immobilized cells, respectively. Substrate inhibition of CPC concentration more than 50 mM was overcomed by 20~25% by immobilization. Pure oxygen supply into reaction system was most efficient in D-amino acid oxidase reaction. Continuous conversion to GL-7-ACA from CPC has been developed with an bioreactor system containing immobilized T variabilis cells. By opera- tion of the reactor for 5 hours, the average conversion yield of >80% and GL-7-ACA production of 40~45 mM per hour could be obtained.

  • PDF

Inhibition of Red Ginseng on 5-Hydroxyeicosatetraenoic Acid (5-HETE) Biosynthesis from Arachidonic Acid in Helicobacter Pylori-infected Gastric Cells

  • Park Soo-Jin
    • Nutritional Sciences
    • /
    • v.9 no.3
    • /
    • pp.152-158
    • /
    • 2006
  • Helicobacter pylori (H. pylori) infection rapidly stimulated either COX-2 or 5-LOX and released arachidonic acid metabolites that have been considered as pivotal mediators in H. pylori-induced inflammatory responses. To determine whether red ginseng extract (RGE) can suppress the biosynthesis of 5(S)-hydroxyeicosatetraenoic acids (HETE), a precursor metabolite of leukotrienes B4 (LTB4) in H. pylori-provoked inflammatory responses in gastric epithelial cells, the biosynthesis of monohydroxy fatty acids was measured using radioactive arachidonic acid and validated by RP-HPLC using non-radioactive AA as substrate in AGS cells cocultured with H. pylori (ATCC 43504) with or without pretreatment of RGE. Among three known major HETEs, H. pylori infection specifically induced the biosynthesis of $^{14}C-5(S)-HETE$ rather than the complex of $^{14}C-15S-/^{14}C-12(S)-HETE$ from $^{14}C-AA$, concomitantly obtained by HPLC(p<0.01). RGE, 1 to $100{\mu}g/ml$, selectively suppressed H. pylori-stimulated $^{14}C-5(S)-HETE$ production implying the attenuation of 5-lipoxygenase activity, of which was similar to known LOX inhibitor NDGA $(10{\mu}M)$ (p<0.01). However, the amount of 5(S)-HETE was significantly reduced by higher dose of RGE $(100{\mu}g/ml)$ (p<0.05). These results indicated that LOX pathway might be one of principle pathogenic mechanisms of H. pylori and red ginseng could be a nutraceutical against H. pylori infection through inhibiting action of LOX activity.

Purification and Characterization of Catalase-2 from Deinococcus radiophilus

  • Oh, Kyung-A;Lee, Young-Nam
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.144-148
    • /
    • 1998
  • A bifunctional catalase-peroxidase, designated catalase-2, of a UV resistant Deinococcus radiophilus was purified to electrophoretic homogeneity by both chromatographic and electrophoretic methods. Its molecular weight was 310 kDa and composed of a tetramer of 80 kDa subunits. The catalase-2 exerted its optimal activity at $30^{\circ}C$ and around pH 9. Its $K_m$ value for $H_{2}0_{2} $ was about 10 mM. It showed the typical ferric heme spectrum with maximum absorption at 403 nm which shifted to 419 nm in the presence of cyanide. The ratio of A40i' A2S0 was 0.48. Fifty percent inhibition of the enzyme activity was observed at $4.6{\times}10^{-6}$, $7.7{\times}10^{-6}$, and $3.0{\times}10^{-6}$ M of NaCN, $NaN_3$, and $NH_{2}OH$, respectively. The enzyme was thermostable and not sensitive to 3-amino-1,2,4-triazole. Treatment of the enzyme with ethanol-chloroform caused a partial loss (30%) of its activity. The catalase-2 was distinct from the Deinococcal bifunctional catalase-3 in a number of properties, particularly in its molecular structure and substrate affinity.

  • PDF

Distribution of chitinases and characterization of two chitinolytic enzymes from one-year-old Korean Ginseng (Panax ginseng C.A. Meyer) roots

  • Moon, Jong-Kook;Han, Beom-Ku;Kim, T. Doo-Hun;Jo, Do-Hyun
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.726-731
    • /
    • 2010
  • We report the tissue-specific distribution of chitinolytic activity in Korean ginseng root and characterize two 31-kDa chitinolytic enzymes. These two enzymes (SBF1 and SBF2) were purified 70- and 81-fold with yields of 0.75 and 1.25%, respectively, and exhibited optimal pH and temperature ranges of 5.0-5.5 and 40-$50^{\circ}C$. With [$^3H$]-chitin as a substrate, $K_m$ and $V_{max}$ values of SBF1 were 4.6 mM and 220 mmol/mg-protein/h, respectively, while those of SBF2 were 7.14 mM and 287 mmol/mg-protein/h. The purified enzymes showed markedly less activity with p-nitrophenyl-N-acetylglucosaminide and fluorescent 4-methylumbelliferyl glycosides of D-N-acetylglucosamine oligomers than with [$^3H$]-chitin. End-product inhibition of both enzymes demonstrated that both are endochitinases with different N-acetylglucosaminidase activity. Furthermore, the $NH_2$-terminal sequence of SBF1 showed a high degree of homology with other plant chitinases whereas the $NH_2$-terminal amino acid of SBF2 was blocked.

Inhibition of melanogenesis by tyrosinase siRNA in human melanocytes

  • An, Sang-Mi;Koh, Jae-Sook;Boo, Yong-Chool
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.178-183
    • /
    • 2009
  • Tyrosinase (TYR) plays a critical role in cellular melanogenesis and, thus, has been the major target of pharmacological approaches for the control of skin pigmentation. This study examined an alternative molecular approach using TYR-small interfering RNA (siRNA) to control melanogenesis in the human melanocytes. Both the mRNA and protein levels of TYR were significantly lowered by TYR-siRNA treatment, whereas TYR-related protein 1 and TYR-related protein 2 displayed no such changes. TYR-siRNA treatment inhibited the cellular melanin synthesis from the externally supplied TYR substrate L-tyrosine. TYR-siRNA also suppressed melanin synthesis and decreased the viability of cells exposed to ultraviolet radiation, supporting a critical role of melanin in protection against ultraviolet radiation. These results suggest that molecular approaches using siRNA targeted to the enzymes of melanogenic pathway may provide a novel strategy for the control of cell pigmentation.

Characterization of Calcium-Activated Bifunctional Peptidase of the Psychrotrophic Bacillus cereus

  • Kim Jong-Il;Lee Sun-Min;Jung Hyun-Joo
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.237-243
    • /
    • 2005
  • The protease purified from Bacillus cereus JH108 has the function of leucine specific endopeptidase. When measured by hydrolysis of synthetic substrate (N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide), the enzyme activity exhibited optimal activity at pH 9.0, $60^{\circ}C$. The endopeptidase activity was stimulated by $Ca^{++},\;Co^{++},\;Mn^{++},\;Mg^{++},\;and\;Ni^{++}$, and was inhibited by metal chelating agents such as EDTA, 1,10-phenanthroline, and EGTA. Addition of serine protease inhibitor, PMSF, resulted in the elimination of the activity. The endopeptidase activity was fully recovered from the inhibition of EDTA by the addition of 1 mM $Ca^{++}$, and was partially restored by $Co^{++}\;and\;Mn^{++}$, indicating that the enzyme was stabilized and activated by divalent cations and has a serine residue at the active site. Addition of $Ca^{++}$ increased the pH and heat stability of endopeptidase activity. These results show that endopeptidase requires calcium ions for activity and/or stability. A Lineweaver-Burk plot analysis indicated that the $K_m$ value of endopeptidase is 0.315 mM and $V_{max}$ is 0.222 ) is $0.222\;{\mu}mol$ of N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide per min. Bestatin was shown to act as a competitive inhibitor to the endopeptidase activity.

Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene

  • Wang, Ju-Hua;Xue, Xiu-Heng;Zhou, Jie;Fan, Cai-Yun;Xie, Qian-Qian;Wang, Pan
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.3
    • /
    • pp.335-339
    • /
    • 2015
  • Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $HCO_3{^-}$ in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis.

Rhei Rhizoma and Chunghyuldan Inhibit Pancreatic Lipase

  • Yang, Hyung-Kil;Kim, Young-Suk;Bae, Hyung-Sup;Cho, Ki-Ho;Shin, Ji-Eun;Kim, Nam-Jae;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 2003
  • Pancreatic lipase-inhibitory activity of the rhizome of Rhei Rhizoma and its antihyperlipidemic activity were measured. Rhei Rhizoma inhibited pancreatic lipase with $IC_{50}$ value of 6.5 mg/ml (triolein as a substrate). Rhei Rhizoma significantly inhibited serum TG level in corn oil feeding-induced mice, and serum TG and cholesterol in Triton WR-1339-induced hyperlipidemic mice. However, Rhei Rhizoma did not show the hypolipidemic activity in high cholesterol diet-induced hyperlipidemic mice. When in vitro pancreatic lipase-inhibitory and in vivo antihyperlipidemic activities of Whangryunhaedoktang (WT) and Chunghyuldan (CD), which is consisted of ingredients of WT and Rhei Rhizoma, were measured, CD exhibited more potent inhibitory activities than WT. Therefore these results suggest that antihyperlipidemic activity of Rhei Rhizoma and CD may be more or less originated from the inhibition of pancreatic lipase.