• Title/Summary/Keyword: substrate inhibition

Search Result 447, Processing Time 0.026 seconds

Inhibition of Various Proteases by MAPI and Inactivation fo MAPI by Trypsin

  • Lee, Hyun-Sook;Kho, Yung-Hee;Lee, Kye-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.181-186
    • /
    • 2000
  • MAPI (microbial alkaline protease inhibitor) was isolated from cultrue broth of Streptomyces chromofuscus SMF28. The Ki values of MAPI for the representative serine proteases such as chymotrypsin and proteinase K were 0.28 and $0.63{\;}\mu\textrm{M}$, respectively, and for the cysteine proteases cathepsin B and papain were 0.66 and $0.28{\;}\mu\textrm{M}$, respectively. These data indicate that MAPI is not a potent selective inhibitor of serine or cysteine proteases. Progress curves for the inhibition of three proteases by MAPI exhibithe characteristic patterns; MAPI exhibited slow-binding inhibition of cathepsin B. It was rapidly associated with chymotrypsin before the addition of substrate and then reactivation of MAPI-inhibited enzyme was investigated in the presence of substrate. On the other hand, MAPI-proteinase K interaction was typical for those classical inhibitors. When MAPI was incubated with trypsin, there was an extensive reduction in the ingibitory activities of MAPI corresponding to 66.5% inactivation of MAPI, indicating that trypsin-like protease may play a role in the decrease of the inhibitory activity during cultivation.

  • PDF

Competitive Inhibition of Tyrosinase by 5-Hydroxy-2-phenylalanylaminomethyl-4-pyron (5-Hydroxy-2-phenylalanylaminomethyl-4-pyron 에 의한 티로시나제의 경쟁적 저해)

  • 임세진
    • YAKHAK HOEJI
    • /
    • v.44 no.3
    • /
    • pp.279-282
    • /
    • 2000
  • The inhibition mode of S-hydroxy-2-phenylalanylaminomethyl-4-pyron ($IC_{50}=24.6{\;}{\mu}M$) on mushroom tyrosinase was investigated using L-tyrosine as a substrate. This inhibitor is the kojic acid derivative, where the C-7 hydroxyl of kojic acid was replaced by amino group and coupled to the carboxyl of L-phenylalanine. The kinetic data obtained show a competitive inhibition pattern.

  • PDF

Alcohol Fermentation by Zymomonas mobilis Part. 1. Effects of environmental conditions on the growth kinetics of Zymomonas mobilis (Zymomonas mobilis에 의한 알코올 발효 I. 발효 환경이 생육에 미치는 영향)

  • Pack, MooYoung;Chun, Byong-ik
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.33-38
    • /
    • 1983
  • The effect of various environmental conditions on the growth kinetics of Zymomonas mobilis were studied and the kinetic parameters were evaluated. The value of ${\mu}m$ was $0.45hr^{-1}$ and Ks was 0.23 g/L. Inhibition of growth at high glucose concentration was found to follow the threshold substrate inhibition. Threshold substrate concentration was 102 g/L and substrate inhibition constant was 196 g/L. The effects of yeast extract concentrations were found to follow the Monod equation. ${\mu}m$ value was $0.45hr^{-1}$ and Ks was 0.3 g/L at 20 g/L of glucose and $0.24hr^{-1}$ and 0.24 g/L respectively at 200 g/L of glucose. The optimum temperature was found to be $35^{\circ}C$ and the activation energy of growth was 7.7 Kcal/mole below $35^{\circ}C$ and -29 Kcal/mole above $35^{\circ}C$.

  • PDF

Regulatory Mechanism of L-Alanine Dehydrogenase from Bacillus subtilis

  • Kim, Su Ja;Kim, Yu Jin;Seo, Mi Ran;Jeon, Bong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1217-1221
    • /
    • 2000
  • L-alanine dehydrogenase from Bacillus subtilis exhibits allosteric kinetic properties in the presence of $ZN^{2+}$. $ZN^{2+}$ induces the binding of substrate (L-alanine) to be cooperative at pH 8.0. The effect of pH variation between pH 7.0 and pH 10.0 on the inhibition by $ZN^{2+}$ correlates with the pH effect on the $K_m$ values for L-alanine within these pH range indicating that $ZN^{2+}$ and substrate compete for the same site. No such cooperativity is induced by $ZN^{2+}$ when the reaction is carried out at pH 10. At this higher pH, $ZN^{2+}$ binds with the enzyme with lower affinity and noncompetitive with respect to L-alanine. Inhibition of L-alanine dehydrogenase by $ZN^{2+}$ depends on the ionic strength. Increase in KCI concentration reduced the inhibition, but allosteric property in $ZN^{2+}$ binding is conserved. A model for the regulatory mechanism of L-alanine dehydrogenase as a noncooperative substrate-cooperative cofactor allosteric enzyme, which is compatible in both concerted and the sequential allosteric mechanism, is proposed.

Inhibition of 100 kDa Cytosolic Phospholipase $A_2$ by Hydrolysable Tannin, 1-desgalloylrugosin-F (가수분해형 탄닌 1-desgalloylrugosin-F에 의한 100 kDa 세포질 포스포리파아제 $A_2$ 활성의 억제효과)

  • 진미령;신혜숙;정광묵;강미선;이민원;김대경
    • YAKHAK HOEJI
    • /
    • v.44 no.1
    • /
    • pp.47-51
    • /
    • 2000
  • To examine whether DGRF inhibits $cPLA_2$ activity in vitro, we purified a 100 kDa $cPLA_2$enzyme from porcine spleen and performed an inhibition study at two concentrations of 5.0 and 50.0 $\mu$M 1-stearoyl-2-[1-$^{l4C}$ ]arachidonoyl-sn -glycero-3-phosphocholine as a substrate to rule out an apparent inhibition due to "substrate depletion". Here we reported that DGRF inhibited $cPLA_2$activity with $ID_{50}$ of 3.2 $\mu$M and virtually complete inactivation of the enzyme occurred at 60 $\mu$M. Interaction experiment between enzyme protein and inhibitor by ultrafiltration method indicated that 1-desgalloylrugosin-F inactivates $cPLA_2$enzyme by an irreversible mechanism.

  • PDF

고정화균체 반응기에서 L-Sorbose 연속생산

  • 신혜원;신봉수;신철수
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.68-74
    • /
    • 1997
  • The conversion of D-sorbitol to L-sorbose by Gluconobater suboxydans was analyzed, and continuous production of L-sorbose was carried out in immobilized cell reactors. L-Sorbose production by high densities of resting cells was more effective than by conventional batch fermentations. Sorbitol dehydrogenase, an enzyme converting D-sorbitol to L-sorbose, did not suffer from substrate inhibition, but from product inhibition. When L-sorbose production was carried out with Ca-alginate-immobilized cells, about 60 g/l of L-sorbose was obtained. On the other hand, when the corn steep liquor (CSL) concentration of medium was reduced to 0.08%, 80 g/l of L-sorbose was obtained. Outgrowth inside the immobilized carriers was thought to block the pores of the carriers so that substrate could not easily diffuse through the carriers. Continuous production of L-sorbose was well accomplished in a bubble column reactor, and 6. 5 g/l.h of productivity and 81.2% of yield were obtained at a substrate feeding rate of 0.08h$^{-1}$ under the optimum conditions with carrier volume of 55% and aeration rate of 3 vvm.

  • PDF

Isoliquiritigenin : A Competitive Tyrosinase Inhibitor from the Heartwood of Dalbergia odorifera

  • Kang, Tai-Hyun;Tian, Yu-Hua;Kim, Youn-Chul
    • Biomolecules & Therapeutics
    • /
    • v.13 no.1
    • /
    • pp.32-34
    • /
    • 2005
  • Effect of isoliquiritigenin isolated from the heartwood of Dalbergia odorifera T. Chen (Leguminosae) on mushroom tyrosinase activity was investigated in vitro using L-tyrosine and L-3, 4-dihydroxyphenylalanine (L-DOPA) as the substrates. When L-tyrosine was used as a substrate, both isoliquiritigenin and kojic acid, a positive control, inhibited tyrosinase activity in a concentration-dependent manner. IC$_{50}$ values of isoliquiritigenin and kojic acid were 61.4 and 52.2 ${\muM}$, respectively. However, isoliquiritigenin showed week inhibitory effect on the oxidation of L-DOPA by tyrosinase with inhibition ratio of 9.1 ${\pm}$ 7.1% at 100 ${\muM}$. It is also suggested that 3-unsubstituted and 4-hydroxyl phenyl group in isoliquiritigenin plays an important role on the inhibition of tyrosinase activity when L-tyrosine was used as a substrate. Analysis of Lineweaver-Burk plot showed that isoliquiritigenin acts as a competitive inhibitor in case of L-tyrosine as a substrate.

Competitive Inhibition of Pepsin by Carboxylic Acids (脂肪酸에 依한 Pepsin의 競走的 억제)

  • Hong Dae Shin
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.161-168
    • /
    • 1970
  • In order to obtain the more effective evidence, supporting the hypothesis which have been previously described by former report that pepsin (EC 3.4. 4.1) forms a hydrophobic bond with the nonpolar side chain of its substrate, the inhibitory effect of carboxylic acids(from formic acid to iso-butyric acid) on the activity of pepsin to the synthetic dipeptide, N-Carbobenzoxy-L-glutamyl-L-tyrosine, was discussed. The kinetic study showed that the inhibition by carboxylic acids was competitive. The Kidecreased with increasing size of the inhibitor molecule. The $-{\Delta}F^{\circ}$increased linearly with increasing number of carbon atoms in the hydrocarbon chain of the inhibitor. It was confirmed that the hydrophobic bond between more than one side chain of amino acid residues(phenylalanine) in the binding region of the active center of pepsin and the side chain of amino acid residues in the substrate was formed as the first step of its enzymic mechanism. The inhibitory effect of carboxylic acids was due to the competition of the hydrocarbon group of the carboxylic acids with the side chain of the substrate for the hydrophobic binding site(the side chain of phenylalanine) of the pepsin.

  • PDF

Substrate Interactions in the Biodegradation of Volatile Organic Compounds by a Yeast Strain (Yeast에 의한 휘발성 유기화합물 분해에 있어서의 기질상호관계 해석)

  • Jang, Hyun Sup;Jeong, MI Young;Shin, Shoung Kyu;Song, Ji Hyeon;Hwang, Sun Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.187-193
    • /
    • 2008
  • Biological removal capacities for volatile organic compounds (VOCs) were determined using a yeast strain, Candida tropicalis. In this study, VOCs including toluene, benzene, p-xylene, and styrene as single substrates or mixtures were tested in the batch culture of the yeast strain. In addition, a kinetic model was applied to evaluate substrate interactions between the VOCs. The yeast strain was able to biodegrade each VOC effectively as a growth substrate, implying it could applied to wide range of VOCs. When the yeast strain was subjected to VOCs in mixtures, the biodegradation rate of one substrate were either increased (stimulated) or decreased (inhibited) by the presence of the others. Both benzene and toluene were inhibited by the other VOCs, and substrate interaction parameters estimated in the model indicated that styrene was the strongest inhibitor for the benzene and toluene biodegradation. Meanwhile, the biodegradation of p-xylene and styrene was stimulated by the presence of either benzene or toluene. The biodegradation rate of p-xylene was significantly increased especially by the presence of toluene, and the styrene biodegradation was enhanced greatly by the benzene addition. The results of the substrate interaction by the yeast strain suggest that the biodegradation rates for the VOCs in mixtures should be carefully evaluated. Furthermore, the competitive inhibition coefficient could be applied as a useful index to determine the substrate interaction

Active-Site Mutants of Human Glutathione S-Transferase P1-1: Effects of the Mutations on Substrate Specificity and Inhibition Characteristics

  • Park, Hee-Joong;Yoon, Suck-Young;Kong, Kwang-Hoon
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.399-404
    • /
    • 1998
  • In order to gain further insight on the relationship between structure and function of glutathione S-transferase (GST), the six active-site mutants, R13T, K44T, Q51A, Q64A, S65A, and D98A, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The active-site mutants showed marked differences in substrate specificity. The substitution of Gln51 with threonine resulted in a drastic decrease in the specific activities to <10% of the wild-type value. The substitution of Arg13 with threonine resulted in more decreased specific activity toward cumene hydroperoxide and in the $I_{50}$ values of S-(2,4-dinitrophenyl) glutathione and benanstatin A. These results suggest that the substitution of Arg13 with threonine changes the conformation of the active site to increase the affinity for the product or electrophilic substrate. Lys44 seems to be in the vicinity of the H-site of hGST P1-1 or may contribute to some extents to the electrophile binding.

  • PDF