• Title/Summary/Keyword: substrate degradation

Search Result 482, Processing Time 0.018 seconds

Regulation of Protein Degradation by Proteasomes in Cancer

  • Jang, Ho Hee
    • Journal of Cancer Prevention
    • /
    • 제23권4호
    • /
    • pp.153-161
    • /
    • 2018
  • Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.

Stenotrophomonas maltophilia에 의한 폭약 2,4,6-Trinitrotoluene의 생분해에 영향을 미치는 물리화학적 요인 (Effect of Varous Physicochemical Factors on the Biodegradation of Explosive 2,4,6-Trinitrotoluene by Stenotropomonas maltophilia)

  • 김영진;이명석;조윤석;한현각;김승기;오계헌
    • KSBB Journal
    • /
    • 제14권3호
    • /
    • pp.315-321
    • /
    • 1999
  • The relationships between the explosive 2,4,6-trinitrotoluene (TNT) degradation by Stenotrophomonas maltophilia and several relevant physicochemical environmental parameters were examined. At neutral pH of the cultures, the degradation of TNT proceeded to completion, whereas only about 50% of TNT was utilized when the cultures were adjusted to acidic pH. The effect of various co-substrates (e.g., glucose, fructose, acetate, citrate, succinate) on the degradation of TNT by the test culture of S. maltophilia was evaluated. The results indicated that, among the various co-substrates studies, the test culture that received 2 mM fructose degraded 100 mg/L of TNT completely within 20 days of incubation at ambient temperature, whereas partial degradation of TNT was observed in the test culture with acetate, citrate, or succinate as a co-substrate, respectively. In fact, fructose was the best co-substrate for TNT degradation in this experiment. The effect of supplemented nitrogens [e.g., (NH$_4$)$_2$,SO$_4$, NH$_4$Cl. urea] on the TNT degradation was monitored. All supplemented nitrogens in this study were inhibitory to TNT degradation. Addition of 1% Tween80 accelerated TNT degradation, and showed complete degradation of TNT within 8 days of incubation. Addition of yeast extract resulted higher growth yields, based on turbidity measurement, but it inhibited TNT degradation.

  • PDF

온도와 초기 BTEX농도변화에 따른 BTEX 분해특성

  • 장순웅;라현주;이시진
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 추계학술발표회
    • /
    • pp.19-22
    • /
    • 1999
  • A microbial consortium derived from a gasoline-contaminated sites was enriched on toluene in 100-mL serum bottle and was found to degrade benzene(B), toluene(T), ethylbenzene(EB), and xylenes(X). Studies conducted to determine the temperature effects and BTEX concentration on BTEX degradation. The results indicated that lowering temperature significantly decreased BTEX degradation rates and varing the BTEX concentration also changed substrate degradation patterns.

  • PDF

Cometabolism of MTBE by pure culture isolated from gasoline contaminated aquifer

  • 장순웅;이시진
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.364-367
    • /
    • 2003
  • In this paper, we have examined the MTBE cometabolic degradation by pure culture, which is isolated gasoline contaminated aquifer. Propane was more effectively utilized as a growth substrate to oxidize MTBE. Specific substrate degradation rate was Increased with increasing initial propane amount. Respiking propane was enhanced and continued MTBE degradation and TBA observation was supported MTBE degradation. The mass balance of MTBE and TBA indicated that MTBE was oxidized to TBA as well as further oxidation of TBA.

  • PDF

Fungal Metabolism of Environmentally Persistent Compounds: Substrate Recognition and Metabolic Response

  • Wariishi, Hiroyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권6호
    • /
    • pp.422-430
    • /
    • 2000
  • Mechanism of lignin biodegradation caused by basidiomycetes and the history of lignin biodegradation studies were briefly reviewed. The important roles of fungal extracellular ligninolytic enzymes such as lignin and manganese peroxidases (LiP and MnP) were also summarized. These enzymes were unique in their catalytic mechanisms and substrate specificities. Either LiP or MnP system is capable of oxidizing a variety of aromatic substrates via a one-electron oxidation. Extracellular fungal system for aromatic degradation is non-specific, which recently attracts many people working a bioremediation field. On the other hand, an intracellular degradation system for aromatic compounds is rather specific in the fungal cell. Structurally similar compounds were prepared and metabolized, indicating that an intracellular degradation strategy consisted of the cellular systems for substrate recognition and metabolic response. It was assumed that lignin-degrading fungi might be needed to develop multiple metabolic pathways for a variety of aromatic compounds caused by the action of non-specific ligninolytic enzymes on lignin. Our recent results on chemical stress responsible factors analyzed using mRNA differential display techniques were also mentioned.

  • PDF

실험실 규모 Cometabolic Air Sparging 공정 적용 특성 평가 : 토양 내 활성미생물 별 MTBE 분해특성 (Evaluation of the Laboratory-Scale Cometabolic Air Sparging Process : Characterization of Indigeneous Microorganism on MTBE Degradation)

  • 안상우;이시진;장순웅
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2010
  • Cometabolic air sparging (CAS) is a new and innovative technology that uses air sparging principles but attempts to optimize in situ contaminant degradation by adding a growth substrate to saturated zone. CAS relies on the degradation of the primary growth substrate and cometabolic substrate transformation in the saturated zone and in the vadose zone for volatilized contaminants. In this study, we have investigated to determine MTBE degradation pattern and microbial activity variation if using propane as a primary substrate at the condition of considering air injection rate and air injection pattern. Laboratory-scale two-dimentional aquifer physical model studies were used and the experimental results were represented that the optimal conditions were as air injection rate of 1,000 mL/min and pulsed air injection pattern (15 min on/off). Over 1,000 mL/min air injection rate and continuous air injection pattern was no affected to increase DO concentration. On the other hand, Injection of propane and propane-utilizing bacteria degraded MTBE partially. And also, injection of propane- and MTBE-utilizing bacteria effectively degraded MTBE and TBA production was observed.

프로판 및 부탄 이용 미생물에 의한 휘발유 첨가제 MTBE의 동시분해 (Cometabolic Biodegradation of Fuel Additive Methyl tert-Butyl Ether(MTBE) by Propane- and Butane-Oxidizing Microorganisms)

  • 장순웅
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권4호
    • /
    • pp.45-52
    • /
    • 2003
  • 국내유류오염지역 토양에서 propane과 butane을 탄소원으로 이용하여 분리된 Nocardia SW3를 대상으로 가스기질농도, 온도, pH 변화에 따른 영향, 그리고 MTBE 공대사 분해 특성을 조사하였다. 초기농도변화에 따른 기질분해속도를 비교하면 propane 및 butane이 70$\mu$㏖일때 각각 30.6, 25.4(n㏖/min/mg protein)으로 관찰되어 빠른 기질이용율을 보여주었으며, 최적온도 및 pH조건은 $30^{\circ}C$, 7이었으며, 실험조건인 온도 $15^{\circ}C$$35^{\circ}C$. pH 5∼8 범위내에서 약간의 차이는 있지만 전반적으로 propane과 butane이 효율적으로 이용되었다. Nocardia SW3를 대상으로 propane 및 butane이 탄소원으로 이용될 때 MTBE분해특성을 비교ㆍ평가한 결과, propane 및 butane의 MTBE 분해 활성도는 유사하였으며, 가스기질이 탄소원으로 이용시 MTB표의 분해량을 나타내는 transformation yield($T_y$)는 propane과 butane의 경우 각각 46.7, 35.0(n㏖ MTBE degraded $\mu$㏖ substrate utilized), transformation capacity($T_c$)는 실험 결과 각각 320, 280(n㏖ MTBE degraded/mg biomass used)로 나타났다. 또한 MTBE 부산물로 TBA가 검출되었으며, TBA의 지속적인 분해를 관찰하였다.

Co/내열금속/다결정 Si 구조의 실리사이드화와 열적안정성 (Silicidation and Thermal Stability of the So/refreactory Metal Bilayer on the Doped Polycrystalline Si Substrate)

  • 권영재;이종무
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.604-610
    • /
    • 1999
  • Silicide layer structures and morphology degradation of the surface and interface of the silicide layers for he Co/refractory metal bilayer sputter-deposited on the P-doped polycrystalline Si substrate and subjected to rapid thermal annealing were investigated and compared with those on the single Si substrate. The CoSi-CoSi2 phase transition temperature is lower an morphology degradation of the silcide layer occurs more severely for the Co/refractorymetal bilayer on the P-doped polycrystalline Si substrate than on the single Si substrate. Also the final layer structure and the morphology of the films after silicidation annealing was found to depend strongly upon the interlayer metal. The layer structure after silicidation annealing of Co/Hf/doped-poly Si is Co-Hf alloy/polycrystalline CoSi2/poly Si substrate while that of Co/Nb is polycrystalline CoSi2/NbSi2/polycrystalline CoSi2/poly Si.

  • PDF

Pseudomonas putida F1과 Burkholderia cepacia G4에 의한 BTEX, trichloroethylene 분해 (Degradation of BTEX and Trichloroethylene by Pseudomonas putida F1 and Burkholderia cepacia G4)

  • 이승우;이준명;장덕진
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.561-568
    • /
    • 1998
  • Two cometabolic trichloroethylene (TC) degraders, Pseudomonas putida F1 and Burkholderia (Pseudomonas) cepacia G4, were found to catabolize phenol, benzene, toluene, and ethylbenzene as carbon and energy sources. Resting cells of P. putida F1 and B. cepacia G4 grown in the presence of toluene and phenol, respectively, were able to degrade not only benzene, toluene and ethylenzene but also TCE and p-xylene. However, these two strains grown in the absence of toluene or phenol did not degrade TCE and p-xylene. Therefore, it was tentatively concluded that cometabolic degradation of TC and p-xylene was mediated by toluene dioxygenase (P. putida F1) or toluene-2-monooxygenase (B. cepacia G4). Maximal degradation rates of BTEX and TCE by toluene- and phenol-induced resting cells of P. putida F1 and B. cepacia G4 were appeared to be 4-530 nmol/(min$.$mg cell protein) when a single compound was solely served as a target substrate. In case of double substrates, the benzene degradation rate by P. putida F1 in the presence of toluene was decreased up to one seventh of that for the single substrate. TCE degradation rate was also linearly decreased as toluene concentration increased. On the other hand, toluene degradation rate was enhanced by benzene and TCE. For B. cepacia G4, degradation rates of TCE and toluene increased 4 times in the presence of 50 ${\mu}$M phenol. From these results, it was concluded that a degradation rate of a compound in the presence of another cosubstrate(s) could not be predicted by simply generalizing antagonistic or synergistic interactions between substrates.

  • PDF

토양미생물을 이용한 Benzene, Toluene, Ethylbenzene 그리고 Xylene isomers(BTEX)의 분해시 기질반응 (Substrate Interactions on Biodegradation of Benzene, Toluene, Ethylbenzene and Xylene Isomers(BTEX) by Indigenous Soil Microorganisms)

  • 라현주;장순웅;이시진
    • 대한환경공학회지
    • /
    • 제22권2호
    • /
    • pp.375-383
    • /
    • 2000
  • 유일로 오염된 지역의 토양에서 toluene을 탄소원으로 이용하는 혼합미생물을 분리하여 toluene, benzene, ethylbenzene 및 xylene isomers(BTEX)의 분해특성을 관찰하였다. 단일기질 실험에서는 모든 BTEX의 분해가 이루어졌으며 toluene, benzene, ethylbenzene, p-xylene 순서로 분해되었다. BTEX 혼합기질 분해실험에서는 단일기질일 때보다 분해속도가 상대적으로 느려졌으며, ethylbenzene이 benzene보다 먼저 분해되는 것이 관찰되었다. 이중 혼합물질 반응 실험에서는 방해작용(inhibition), 촉진작용(stimulation), 그리고 비반응(non-interaction)과 같은 다양한 기질반응이 관찰되었으며, ethylbenzene은 benzene, toluene, xylene의 분해에 강한 방해영향을 주었다. Xylene 분해특성에서 m- 및 p-xylene은 혼합미생물에 탄소원으로 이용되었으며 benzene이나 toluene이 동시에 존재할 때는 xylene isomer의 분해가 촉진되었다. 그러나 o-xylene의 분해는 benzene에 의해서만 촉진되었다.

  • PDF