• Title/Summary/Keyword: substantivalism

Search Result 4, Processing Time 0.014 seconds

Substantivalism and Relationism in the 4 Dimensional Interpretation of Newtonian Space-Time (뉴턴 시공간의 4차원 해석에서의 실체론과 관계론 간의 논쟁)

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.87-100
    • /
    • 2017
  • The ontological status of Newtonian space-time has been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of space-time. Substantivalism maintains that the points of space-time have existence analogous to material substance. Relationism claims that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Newtonian space is considered as a three dimensional entity in accordance with our geometric common sense. Yet given that the concept of motion is defined as the change of position throughout time, it is possible to interpret space-time as a 4 dimensional entity. In this essay, substantivalist-relationist debate is considered within the context of non-relativistic 4 dimensional space-time theory. This essay attempts to clarify the dispute over the ontology of space-time by elucidating the relationship between the ontology of space-time, motion, and space-time symmetry.

Leibniz-Clark Controversy on the Nature of Space and Hole Argument (공간의 본성에 대한 라이프니츠-클라크 논쟁과 홀 논변)

  • Yang, Kyoung-eun
    • Journal of Korean Philosophical Society
    • /
    • v.144
    • /
    • pp.235-256
    • /
    • 2017
  • This essay considers Leibniz-Clark correspondence on the nature of space and hole argument. The ontology of space had been debated under the name of substantivalism-relationism controversy. The debates between the two parties are concerned with the nature of existence of parts of space-time. Substantivalism claims that the point of space-time has existence analogous to that of material substance. Relationism argues that space-time should be understood as the framework of possible spatio-temporal relations between bodies. Although these two approaches attempt to respect theoretical context, it seems that the problems of these two interpretive schemes stems from the lack of understanding of the structure of space-time theories, especially how space-time is connected with the laws of motion. In order to appreciate the substance-relation controversy without deviating from the context of space-time theories, it is necessary then to capture how space-time theories are constituted. This essay offers the clear connection of ontology of space-time with present practices of theoretical physicists.

Space-Time Symmetry and Space-Time Ontology (시공간 대칭성과 시공간 존재론)

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.181-190
    • /
    • 2015
  • In spite of various attempts to characterize the ontological status of space-time, Newtonian substantivalism and Leibnizian relationism, what is really at issue in the controversy between the two parties is by no means clear. This essay argues that from the perspective of space-time symmetries, classical space-time can be unambiguously classified as substantival space-time and relational space-time. The symmetries of space-time theories distinguish the invariant geometric relationships between events. The essential difference between the two space-times stems from whether or not there exists the affine structure that distinguishes the inertial trajectories of a given body.

The Controversy on the Conceptual Foundation of Space-Time Geometry (시공간 기하학의 개념적 기초에 대한 논쟁)

  • Yang, Kyoung-Eun
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.273-292
    • /
    • 2009
  • According to historical commentators such as Newton and Einstein, bodily behaviors are causally explained by the geometrical structure of space-time whose existence analogous to that of material substance. This essay challenges this conventional wisdom of interpreting space-time geometry within both Newtonian and Einsteinian physics. By tracing recent historical studies on the interpretation of space-time geometry, I defends that space-time structure is a by-product of a more fundamental fact, the laws of motion. From this perspective, I will argue that the causal properties of space-time cannot provide an adequate account of the theory-change from Newtoninan to Einsteinian physics.

  • PDF