• 제목/요약/키워드: substantia nigra pars compacta

검색결과 28건 처리시간 0.029초

한국재래산양 신생아 중뇌에서의 Tyrosine Hydroxylase 면역반응세포 분포에 관한 연구 (The study of dopaminergic immunoreactive cell distribution in mesencephalon of korean native goat newborn)

  • 김동대
    • 대한물리치료과학회지
    • /
    • 제6권4호
    • /
    • pp.201-207
    • /
    • 1999
  • I investigated that tyrosine hydroxylase immunoreactive cells distribution in mesencephalon of korean native goat newborn by immunohistochemical method. The results obtained in this study were summarized as following. 1. It were observed TH-IR cells in substantia nigra pars compacta, ventral tegmental area, substantia nigra pars reticular, central linear nucleus and retrorubral field of Midbrian. 2. TH-IR cells were observed that to mass on several areas in substantia nigra pars compacta and substantia nigra pars reticular. 3. TH-IR cell process observed short or non and it were protruded irregular direction.

  • PDF

랫드 흑질 신경세포의 전기적 특성과 ATP-sensitive K+채널의 전류밀도 (Electrical properties and ATP-sensitive K+ channel density of the rat substantia nigra pars compacta neurons)

  • 한성규;박진봉;류판동
    • 대한수의학회지
    • /
    • 제40권2호
    • /
    • pp.275-282
    • /
    • 2000
  • Substantia nigra is known to highly express glibenclamide binding site, a protein associated to ATP-sensitive $K^{+}$ ($K_{ATP}$) channel in the brain. However, the functional expression of $K_{ATP}$ channels in the area is not yet known. In this work, we attempted to estimate the functional expression of $K_{ATP}$ channels in neurons of the substantia nigra pars compacta (SNC) in young rats using slice patch clamp technique. Membrane properties and whole cell currents attributable to $K_{ATP}$ channel were examined by the current and voltage clamp method, respectively. In SNC, two sub-populations of neurons were identified. Type I (rhythmic) neurons had low frequency rebound action potentials ($4.5{\pm}0.25Hz$, n=75) with rhythmic pattern. Type II (phasic) neurons were characterized by faster firing ($22.7{\pm}3.16Hz$, n=12). Both time constants and membrane capacitance in rhythmic neurons ($34.0{\pm}1.27$ ms, $270.0{\pm}11.83$ pF) and phasic neurons ($23.7{\pm}4.16$ ms, $184{\pm}35.2$ pF) were also significantly different. The current density of $K_{ATP}$ channels was $6.1{\pm}1.47$ pA/pF (2.44~15.43 pA/pF, n=8) at rhythmic neurons of young rats. Our data show that in SNC there are two types of neurons with different electrical properties and the density of $K_{ATP}$, channel of rhythmic neuron is about 600 channels per neuron.

  • PDF

야생등줄쥐 흑색질 및 배쪽피개의 dopamine성 신경세포 (Dopaminergic neurons of the substantia nigra and ventral tegmentum in the stripped field mouse(apodemus agrarius coreae))

  • 정영길;김길수;이철호;윤원기;현병화;오양석;원문호;김무강
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.489-497
    • /
    • 1997
  • The distributions characteristics of neurons displaying immunoreactivity to the catecholamine synthetic enzymes, tyrosine hydroxylase(TH), dopamine-${\beta}$-hydroxylase(DBH), and phenylethanolamine-N-methyltransferase(PNMT) were examined in the adjacent sections of the substantia nigra & ventral tegmentum of the Striped Field Mouse(Apodemus agrarius coreae). None of these cell groups displayed either DBH or PNMT immunoreactivity. Many TH-immunoreactive neurons were present in the substantia nigra & ventral tegmentum. The major dopaminergic cell(TH-positive, DBH- & PNMT-negative) group in the midbrain was present in the pars compacta of substantia nigra and adjacent ventral tegmentum. And smaller dopaminergic cell groups Were found in the pars reticulata of the substantia nigra and central liner nucleus.

  • PDF

모래쥐 흑색질의 도파민성 신경세포의 분포와 미세구조 (Distribution and Ultrastructure of Dopaminergic Neurons in the Substantia Nigra of Mongolian Gerbil (Meriones unguiculates))

  • 최월봉;윤상선;고병문;조승묵;남성안;최창도
    • Applied Microscopy
    • /
    • 제27권4호
    • /
    • pp.461-472
    • /
    • 1997
  • The substantia nigra of the Mongolian gerbil was studies by tyrosine hydroxylase immunohistochemistry and immunoelectron microscopy with preembedding method. The purpose was to obtain information on the distribution and ultrastructure of the Tyrosine hydroxylase immunoreactive and dopaminergic neurons in the substantia nigra, in order to provide the necessary background for the gerbil. Large number of tyrosine hydroxylase immunoreactive neurons were located in the compact part of substantia nigra. Findings in the gerbil, compared to observations in the other species, included the presence of prominent bundles of tyrosine hydroxylase immunoreactive cytoplasmic processes passing in the dorsoventral direction from pars compacta into pars reticulata at middle and caudal levels of the substantia nigra, and the presence of a distinct tyrosine hydroxylase immunoreactive substantia nigra pars lateralis. Tyrosine hydroxylase immunoreactive neurons had well-developed cell organelles, especially rough endoplasmic reticulum, free ribosome and poly-ribosome, and showed the infoldings of the nuclear envelope. We anticipate that the present description of the cellular organization of the tyrosine hydroxylase immunoreactive dopaminergic area in the substantia nigra of gerbil will be useful for the animal experimental model of Parkinson's disease.

  • PDF

Combinatorial modulation of the spontaneous firings by glutamate receptors in dopamine neurons of the rat substantia nigra pars compacta

  • Kim, Shin-Hye;Park, Yu-Mi;Sungkwon Chung;Uhm, Dae-Yong;Park, Myoung-Kyu
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.40-40
    • /
    • 2003
  • Spontaneous firing rate and patterns of dopaminergic neurons in midbrain are key factors in determining the level of dopamine at target loci as well as in the mechanisms such as reward and motor coordination. Although glutamate, as a major afferent, is reported to enhance firing rate, the detailed actions of NMDA-, AMPA/kainate-, and metabotropic glutamate receptors (mGluR) on filing patterns are not clear. Thus we have investigated the role of glutamate receptors on the spontaneous firing activities using the network-free, acutely isolated dopamine neurons from substantia nigra pars compacta(SNc) of the 9-14 days rat. The isolated cells showed spontaneous regular firings of near 2.5 Hz, whose rate was enhanced by glutamate at submicromolar levels (0.3 $\square$M) but abolished by high concentrations more than 10 $\square$M.

  • PDF

The Nigrostriatal Tract between the Substantia Nigra and Striatum in the Human Brain: A Diffusion Tensor Tractography Study

  • Yeo, Sang Seok;Seo, Jeong Pyo
    • The Journal of Korean Physical Therapy
    • /
    • 제32권6호
    • /
    • pp.388-390
    • /
    • 2020
  • Objectives: The nigrostriatal tract (NST) connect from the substantia nigra pars compacta to the striatum. A few previous studies have reported on the NST in the Parkinson's disease using a proboblistic tractography method. However, no study has been conducted for identification of the NST using streamline DTT technique. In the current study, we used streamline DTI technique to investigate the reconstruction method and characteristics of the NST in normal subjects. Methods: Eleven healthy subjects were recruited in this study. The NST from the substantia nigra of the midbrain and the striatum of basal ganglia was reconstructed using DTI data. Fractional anisotropy, apparent diffusion coefficient (ADC) values and fiber numbers of the NST were measured. Results: In all subjects, the NST between the substantia nigra of the midbrain and the striatum. Mean values for FA, ADC, and tract volume were 0.460, 0.818, and 154.3 in the right NST, and 0.485, 0.818, and 176.3 in the left NST respectively. Conclusions: we reconstructed the NRT from the substantia nigra of the midbrain and the striatum of the basal ganglia using streamline tractography method. We believe that the findings and the proposed streamline reconstruction method of this study would be useful in future researches on the NST of the human brain.

COPPER ENHANCEMENT OF L-DOPA-INDUCED OXIDATIVE DNA DAMAGE AND CELL DEATH VIA REDOX CYCLING

  • Lee, Jeong-Sang;Surh, Young-Joan
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.113-113
    • /
    • 2001
  • Dopamine, a principal neurotransmitter in the central nervous system, accounts for 90% of total catecholamines. It serves as a precursor of certain hormones, melanins, noradrenalin and adrenalin. Parkinsonian disease (PD) is characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta and a significant dimunution in the neostriatal content of dopamine and its metabolites.(omitted)

  • PDF

Tricyclic Antidepressants Amitriptyline and Desipramine Induced Neurotoxicity Associated with Parkinson's Disease

  • Lee, Min-yeong;Hong, Seokheon;Kim, Nahmhee;Shin, Ki Soon;Kang, Shin Jung
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.734-740
    • /
    • 2015
  • Recent studies report that a history of antidepressant use is strongly correlated with the occurrence of Parkinson' disease (PD). However, it remains unclear whether antidepressant use can be a causative factor for PD. In the present study, we examined whether tricyclic antidepressants amitriptyline and desipramine can induce dopaminergic cell damage, both in vitro and in vivo. We found that amitriptyline and desipramine induced mitochondria-mediated neurotoxicity and oxidative stress in SH-SY5Y cells. When injected into mice on a subchronic schedule, amitriptyline induced movement deficits in the pole test, which is known to detect nigrostriatal dysfunction. In addition, the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta was reduced in amitriptyline-injected mice. Our results suggest that amitriptyline and desipramine may induce PD-associated neurotoxicity.

흰쥐 흑질내 수산화도파민 주입으로 유도된 파킨슨병 모델에서 흑질과 선조체의 신경교세포 반응 (Neuroglial Reaction in the Substantia Nigra and Striatum of 6-Hydroxydopamine Induced Parkinson's Disease Rat Model)

  • 양경원;성재훈;김문찬;이문용;이상원;최승진;박춘근;강준기
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권6호
    • /
    • pp.688-698
    • /
    • 2001
  • Objectives : Parkinson's disease is a well-known neurodegenerative disease characterized by dopaminergic cell death in the substantia nigra. The reactive gliosis by activated astrocytes and microglias is no more regarded as a simple sequel of neuronal cell death. Microglial activation takes place in a stereotypic pattern with graded morphologic and functional(resting, activated and phagocytic) changes. In Parkinson's disease animal model, the degree of microglial activation along the nigro-striatal dopaminergic tract has not been studied intensively. The purpose of this study was to elucidate the characteristics of microglial reaction and to grade its degree of activation at substantia nigra and corpus striatum using 6-hydroxydopamine induced rat model of Parkinson's disease. Methods : Using Sprague-Dawley rat, parkinsonian model was made by 6-hydroxydopamine(OHDA) induced destruction of medial and lateral substantia nigra(SN). The rat was sacrificed 3-, 5-, 7-, 14- and 21-day-after operation. For control group, we injected saline with same manner and sacrificed 3-day after operation. With immunohistochemistry, we examined dopaminergic neuronal cells and microglial expression using tyrosine hydroxylase (TH) and OX-42 antibodies, respectively. Also we performed in situ hybridization for osteopontin, a possible marker of subset in activated microglia. Results : 1) In lesioned side of substantia nigra and corpus striatum, the TH immunoreactivity was markedly decreased in whole experimental groups. 2) Using optical densitometry, microglia induced immunoreactivity of OX-42 was counted at SN and corpus striatum. At SN, it was increased significantly on the lesioned side in control and all time-dependent experimental groups. At striatum, it was increased significantly in post lesion 3-day group only(p <0.05). Compared to control group, immunoreactivity of OX-42 on lesioned side was increased in groups, except post lesion 21-day group, at SN. Only post lesion 3-day group showed significance at striatum(p <0.05). Compared to SN region, immunoreactivity of OX-42 was much weaker in striatum. 3) Microscopically, the microglias showed typically different activation pattern. At SN, numerous phagocytic microglias were found at pars compacta and reticularis of lesion side. At striatum, no phagocytic form was found and the intensity of staining was much weaker. 4) At SN, the immunoreactivity of osteopontin showed definite laterality and it was markedly increased at pars compacta of lesion side with relatively short duration time. At striatum, however, it was not detected by in situ hybridization technique. Conclusion : The nigral 6-OHDA induced rat model of Parkinson's disease revealed several characteristic patterns of microglial reaction. At SN, microglias was activated shortly after direct neuronal damage and maintained for about three weeks. In contrast, despite of sufficient dopaminergic insufficiency at striatum, activation of microglias was trivial, and distinguished 3 day later. Antegrade slow neuronal degeneration is major pathophysiology in striatal dopaminergic deficiency. So, the acuteness of neuronal damage and consequential degree of neuronal degeneration may be important factor for microglial activation in neurodegenerative diseases such as Parkinson's disease. Additionally, osteopontin may be a possible marker for several subsets of activated microglia, possibly the phagocytic form.

  • PDF

도파민 수송체의 기능적 특성 및 발현에 관한 연구 (Functional Characterization and Regional Expression of Dopamine Transporter)

  • 이상훈;이송득;성기욱;이동섭;이용성;고재경
    • 약학회지
    • /
    • 제39권2호
    • /
    • pp.161-168
    • /
    • 1995
  • Brain dopamine systems play a central role in the control of movement, hormone release, and many complex behavior. The action of dopamine at its synapse is terminated predominately by high affinity reuptake into presynaptic terminals by dopamine transporter (DAT). The dopamine transporter(DAT) is membrane protein localized to dopamine-containing nerve terminals and closely related with cocaine abuse, Parkinsonism, and schizophrenia. In present study, the recombinant plasmid pRc/CMV-DAT, constructed by subcloning of a cDNA encoding a bovine DAT into eukaryotic expression vector pRc/CMV, was stably transfected into CV-1 cells(monkey kidney cell line). The DAT activities in the cell lines selected by Geneticin$^{R}$ were determined by measuring the uptake of $[^3H]$-dopamine. The transfected cell lines showed 30-50 fold higher activities than untransfected CV-1 cell line, and this result implies that DAT is well expressed and localized in transfected cells. The transfected cells accumulated $[^3H]$-dopamine in a dose-dependent manner with a $K_{m}$ of 991.6nM. Even though high doses of norepinephrine, epinephrine, serotonin, and choline neurotransmitters inhibited the uptake of $[^3H]$-dopamine, DAT in transfected cell line was proven to be much more specific to dopamine. The psychotropic drugs such as GBR12909, CFT, normifensine, clomipramine, desipramine, and imipramine inhibited significantly the dopamine uptake in tissue culture cells stably transfected with DAT cDNA. Radioactive in situ hybridization was done to map the cellular localization of DAT mRNA-containing cells in the adult rat central nervous system. The strong hybridization signals were detected only in the substantia nigra pars compacta and ventral tegmental area. The restricted anatomical localization of DAT mRNA-containing cells confirms the DAT as a presynaptic marker of dopamine-containing cells in the rat brain.

  • PDF