• Title/Summary/Keyword: substantia nigra

Search Result 139, Processing Time 0.021 seconds

Experimental Study on the Expression of Striatal Dopamine Receptors in the Rat Model of Parkinsonism (파킨슨씨병 모델 흰쥐에서 줄무늬체 도파민 수용체의 발현에 대한 연구)

  • Oh, Chang-Wan;Han, Dae Hee;Chung, Chun Kee;Cho, Sa-Sun;Park, Kyeong-Han;Kim, Yong-Sik;Park, Chan-Woong
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.2
    • /
    • pp.155-166
    • /
    • 2000
  • This study was designed to investigate the underlying mechanisms for the temporal changes of the striatal dopamine D2 receptors in the rat model of parkinsonism. After injection of the 6-hydroxydopamine into the substantia nigra of adult rats, we measured the receptor binding capacity(Bmax), mRNA and protein of the D2 receptor at 2, 4 and 8 weeks. Following the lesion, mRNA and protein were elevated simultaneously on both sides of the striata. They showed more increase on the normal side at 2 and 4 weeks, and then they were almost equally abundant on both sides at 8 weeks. We also observed their increased production in the diffuse cortical and subcortical regions. The Bmax value also increased bilaterally in both striata, and was higher on the normal side at 2 weeks and then on the lesioned side at 4 and 8 weeks. These findings suggest that production of the striatal D2 receptor is regulated at the transcriptional level in this animal model. They also imply that this control may be mediated through a pathway which can have influence on the whole brain, rather than the local control of the dopamine content alone. The measured functional activity(Bmax) of the D2 receptor was not proportional to the amount of the receptor mRNA and proteins produced. This difference may be explained by the post-translational modification of the receptor proteins, which may be controlled by such factor as the local concentration of dopamine.

  • PDF

Changes of Motor Deactivation Regions in Patients with Intracranial Lesions

  • Lee, Seung Hwan;Koh, Jun Seok;Ryu, Chang-Woo;Jahng, Geon Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.6
    • /
    • pp.453-460
    • /
    • 2013
  • Objective : There is a rich literature confirming the default mode network found compatible with task-induced deactivation regions in normal subjects, but few investigations of alterations of the motor deactivation in patients with intracranial lesions. Therefore, we hypothesized that an intracranial lesion results in abnormal changes in a task-induced deactivation region compared with default mode network, and these changes are associated with specific attributes of allocated regions. Methods : Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) during a motor task were obtained from 27 intracranial lesion patients (mean age, 57.3 years; range 15-78 years) who had various kinds of brain tumors. The BOLD fMRI data for each patient were evaluated to obtain activation or deactivation regions. The distinctive deactivation regions from intracranial lesion patients were evaluated by comparing to the literature reports. Results : There were additive deactivated regions according to intracranial lesions : fusiform gyrus in cavernous hemangioma; lateral occipital gyrus in meningioma; crus cerebri in hemangiopericytoma; globus pallidus, lateral occipital gyrus, caudate nucleus, fusiform gyrus, lingual gyrus, claustrum, substantia nigra, subthalamic nucleus in GBM; fusiform gyrus in metastatic brain tumors. Conclusion : There is increasing interest in human brain function using fMRI. The authors report the brain function migrations and changes that occur in patients with intracranial lesions.

Toluene Inhalation Causes Early Anxiety and Delayed Depression with Regulation of Dopamine Turnover, 5-HT1A Receptor, and Adult Neurogenesis in Mice

  • Kim, Jinhee;Lim, Juhee;Moon, Seong-Hee;Liu, Kwang-Hyeon;Choi, Hyun Jin
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.282-291
    • /
    • 2020
  • Inhaled solvents such as toluene are of particular concern due to their abuse potential that is easily exposed to the environment. The inhalation of toluene causes various behavioral problems, but, the effect of short-term exposure of toluene on changes in emotional behaviors over time after exposure and the accompanying pathological characteristics have not been fully identified. Here, we evaluated the behavioral and neurochemical changes observed over time in mice that inhaled toluene. The mice were exposed to toluene for 30 min at a concentration of either 500 or 2,000 ppm. Toluene did not cause social or motor dysfunction in mice. However, increased anxiety-like behavior was detected in the short-term after exposure, and depression-like behavior appeared as delayed effects. The amount of striatal dopamine metabolites was significantly decreased by toluene, which continued to be seen for up to almost two weeks after inhalation. Additionally, an upregulation of serotonin 1A (5-HT1A) receptor in the hippocampus and the substantia nigra, as well as reduced immunoreactivity of neurogenesis markers in the dentate gyrus, was observed in the mice after two weeks. These results suggest that toluene inhalation, even single exposure, mimics early anxiety-and delayed depression-like emotional disturbances, underpinned by pathological changes in the brain.

Dopamine Modulates Corticostriatal Synaptic Transmission through Both $D_1$ and $D_2$ Receptor Subtypes in Rat Brain

  • Lee, Hyun-Ho;Choi, Se-Joon;Kim, Ki-Jung;Cho, Hyeong-Seok;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.263-268
    • /
    • 2005
  • Striatum has important roles in motor control, habitual learning and memory. It receives glutamatergic inputs from neocortex and thalamus, and dopaminergic inputs from substantia nigra. We examined effects of dopamine (DA) on the corticostriatal synaptic transmission using in vitro extracellular recording technique in rat brain corticostriatal slices. Synaptic responses were elicited by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. Corticostriatal population spike (PS) amplitudes were decreased ($39.4{\pm}7.9$%) by the application of $100{\mu}M$ DA. We applied receptor subtype specific agonists and antagonists and characterized the modulation of corticostriatal synaptic transmission by different DA receptor subtypes. $D_2$ receptor agonist (quinpirole), antagonist (sulpiride), and $D_1$ receptor antagonist (SKF 83566), but not $D_1$ receptor agonist (SKF 38393), induced significantly the reduction of striatal PS. Pretreatment neither with SKF 83566 nor sulpiride significantly affected corticostriatal synaptic inhibition by DA. However, the inhibition of DA was completely blocked by pretreatment with mixed solution of both SKF 83566 and sulpiride. These results suggest that DA inhibits corticostriatal synaptic transmission through both $D_1$ and $D_2$ receptors in concert with each other.

Regional difference in spontaneous firing inhibition by GABAA and GABAB receptors in nigral dopamine neurons

  • Kim, Yumi;Jang, Jinyoung;Kim, Hyun Jin;Park, Myoung Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.721-729
    • /
    • 2018
  • GABAergic control over dopamine (DA) neurons in the substantia nigra is crucial for determining firing rates and patterns. Although GABA activates both $GABA_A$ and $GABA_B$ receptors distributed throughout the somatodendritic tree, it is currently unclear how regional GABA receptors in the soma and dendritic compartments regulate spontaneous firing. Therefore, the objective of this study was to determine actions of regional GABA receptors on spontaneous firing in acutely dissociated DA neurons from the rat using patch-clamp and local GABA-uncaging techniques. Agonists and antagonists experiments showed that activation of either $GABA_A$ receptors or $GABA_B$ receptors in DA neurons is enough to completely abolish spontaneous firing. Local GABA-uncaging along the somatodendritic tree revealed that activation of regional GABA receptors limited within the soma, proximal, or distal dendritic region, can completely suppress spontaneous firing. However, activation of either $GABA_A$ or $GABA_B$ receptor equally suppressed spontaneous firing in the soma, whereas $GABA_B$ receptor inhibited spontaneous firing more strongly than $GABA_A$ receptor in the proximal and distal dendrites. These regional differences of GABA signals between the soma and dendritic compartments could contribute to our understanding of many diverse and complex actions of GABA in midbrain DA neurons.

Protective Effects of Celastrol, the Triterpenoid Component of Celastrus Orbiculatus, on Dopaminergic Neuronal Cells in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned Parkinson's Disease Rats (노박덩굴에 함유된 celastrol 성분의 파킨슨병을 유발시킨 쥐에서의 도파민 신경세포 보호효과)

  • Lee, Kap-Duk;Kim, Kwang-Jin;Park, Yong-Ki
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.94-103
    • /
    • 2008
  • Objectives: The aim of this study was to determine whether celastrol, the triterpenoid component of Celastrus orbiculatus, offers neuroprotection against Parkinson's disease (PD) in mice administered 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine(MPTP). Methods: We examined how celastrol affected MPTP-induced neuronal loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in substantia nigra pars compacta (SNpc) in the midbrain of mice. C57BL/6J mice were divided into four groups: (1) saline-saline, (2) saline-celastrol, (3) MPTP-saline, and (4) MPTP-celastrol. The mice were injected intraperitoneally (i.p.) with four administrations of MPTP (18mg/kg) at 2 h intervals and then i.p. administered celastrol (3mg/kg) two times at 12 h after last celastrol administration. Expression of TH on the SNpc of brain tissues were analyzed at 7 days after the treatments by immunohistochemistry and Western blot. Results: Immunohistochemical analysis using TH antibody showed that celastrol provided significantly protective effects against MPTP-induced loss of TH-positive dopaminergic neurons in the SNpc region of the midbrain of mice. Our Western blot study also showed that celastrol significantly inhibits the MPTP-induced neuronal damage via the up-regulation of TH protein levels in MPTP mice. Conclusions: The present results suggest that it may be possible to use celastrol for the prevention of nigral degenerative disorders including PD, caused by exposure to toxic substances.

  • PDF

Effects of Treadmill Exercise on the Recovery of Dopaminergic Neuron Loss and Muscle Atrophy in the 6-OHDA Lesioned Parkinson's Disease Rat Model

  • Choe, Myoung-Ae;Koo, Byung-Soo;An, Gyeong-Ju;Jeon, Song-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.305-312
    • /
    • 2012
  • This study was to determine the effect of exercise on the recovery of dopaminergic neuron loss and muscle atrophy in 6-OHDA-induced hemi Parkinson's disease model. Exercise was loaded twice per day for 30 minutes each time, at 5 days after 6-OHDA lesioning and continued for 16 days using a treadmill. Exercise significantly increased the number of tyrosine hydroxylase positive neuron in the lesioned substantia nigra and the expression level of tyrosine hydroxylase in the striatum compared with the control group. To examine which signaling pathways may be involved in the exercise, the phosphorylation of $GSK3{\beta}$ and ERK were observed in the striatum. In the control group, basal level of $GSK3{\beta}$ phosphorylation was less than in both striatum, but exercise increased it. ERK phosphorylation decreased in the lesioned striatum, but exercise recovered it. These findings suggest that exercise inactivates $GSK3{\beta}$ by phosphorylation which may be involved in the neuroprotective effect of exercise on the 6-OHDA-induced cell death. In the exercise group, weight, and Type I and II fiber cross-sectional area of the contralateral soleus significantly recovered and expression of myosin heavy chain and Akt and ERK phosphorylation significantly increased by exercise. These results suggest that exercise recovers Parkinson's disease induced dopaminergic neuron loss and contralateral soleus muscle atrophy.

Differential Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on Motor Behavior and Dopamine Levels at Brain Regions in Three Different Mouse Strains

  • Lee, Keun-Sung;Lee, Jin-Koo;Kim, Hyung-Gun;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.89-97
    • /
    • 2013
  • Developing an animal model for a specific disease is very important in the understanding of the underlying mechanism of the disease and allows testing of newly developed new drugs before human application. However, which of the plethora of experimental animal species to use in model development can be perplexing. Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a very well known method to induce the symptoms of Parkinson's disease in mice. But, there is very limited information about the different sensitivities to MPTP among mouse strains. Here, we tested three different mouse strains (C57BL/6, Balb-C, and ICR) as a Parkinsonian model by repeated MPTP injections. In addition to behavioral analysis, endogenous levels of dopamine and tetrahydrobiopterin in mice brain regions, such as striatum, substantia nigra, and hippocampus were directly quantified by liquid chromatography-tandem mass spectrometry. Repeated administrations of MPTP significantly affected the moving distances and rearing frequencies in all three mouse strains. The endogenous dopamine concentrations and expression levels of tyrosine hydroxylase were significantly decreased after the repeated injections, but tetrahydrobiopterin did not change in analyzed brain regions. However, susceptibilities of the mice to MPTP were differed based on the degree of behavioral change, dopamine concentration in brain regions, and expression levels of tyrosine hydroxylase, with C57BL/6 and Balb-C mice being more sensitive to the dopaminergic neuronal toxicity of MPTP than ICR mice.

Effect of DHEA on Recovery of Muscle Atrophy Induced by Parkinson' s Disease

  • Choe, Myoung-Ae;An, Gyeong-Ju;Koo, Byung-Soo;Jeon, Song-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.6
    • /
    • pp.834-842
    • /
    • 2011
  • Purpose: The purpose of this study was to determine the effect of dehydroepiandrosterone (DHEA) on recovery of muscle atrophy induced by Parkinson's disease. Methods: The rat model was established by direct injection of 6-hydroxydopamine (6-OHDA, 20 ${\mu}g$) into the left striatum using stereotaxic surgery. Rats were divided into two groups; the Parkinson's disease group with vehicle treatment (Vehicle; n=12) or DHEA treatment group (DHEA; n=22). DHEA or vehicle was administrated intraperitoneally daily at a dose of 0.34 mmol/kg for 21 days. At 22-days after DHEA treatment, soleus, plantaris, and striatum were dissected. Results: The DHEA group showed significant increase (p<.01) in the number of tyrosine hydroxylase (TH) positive neurons in the lesioned side substantia nigra compared to the vehicle group. Weights and Type I fiber cross-sectional areas of the contralateral soleus of the DHEA group were significantly greater than those of the vehicle group (p=.02, p=.00). Moreover, extracellular signal-regulated kinase (ERK) phosphorylation significantly decreased in the lesioned striatum, but was recovered with DHEA and also in the contralateral soleus muscle, Akt and ERK phosphorylation recovered significantly and the expression level of myosin heavy chain also recovered by DHEA treatment. Conclusion: Our results suggest that DHEA treatment recovers Parkinson's disease induced contralateral soleus muscle atrophy through Akt and ERK phosphorylation.

흰쥐의 뇌와 부신에서 카테콜아민 생합성 효소들의 유전자 발현에 미치는 Estrogen의 효과

  • 유경신;이성호
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.114-114
    • /
    • 2002
  • 포유동물에서 뇌와 부신에서 합성.분비되는 카테콜아민(Catecholamine, CA)계 신경전달물질인 dopamine(DA), norepinephrine(NE), epinephrine(E)은 체내 각종 생리현상의 조절에 필수적이며, 생식과 관련지어서는 시상하부-뇌하수체 간 GnRH-gonadotropin 호르몬 축의 활성을 조절하는 기능 외에도 번식과 관련된 여러 행동양식을 조절함이 잘 알려져 있다. 본 연구는 CA 생합성 효소들인 tyrosine hydroxylase(TH), dopamine beta-hydroxylase(DBH), phenylethanolamine-N-methyltransferase(PNMT)의 유전자 발현에 미치는 sex steroid의 영향을 조사하였다. 성숙한 암컷 횐쥐(SD strain)의 난소를 제거하고 1주 경과 후 vehicle(sesame oil; OVX+Oil 실험군) 또는 estradiol 17$\beta$(235ug/m1; OVX+E$_2$실험군)이 든 silastic capsule(길이 14mm; 내경 1.55mm; 외경 3.125mm)을 48 시간 동안 처리한 뒤 희생시켰다. 적출된 조직으로부터 RNA를 추출한 후 semi-quantitative RT-PCR을 시행하였다. (i) TH의 발현 정도는 OVX+Oil 군에서는 시상하부) substantia nigra(SNc)) 부신 순으로, OVX+E$_2$군에서는 SN글 부신) 시상하부 순으로 나타났다. TH 발현에 미치는 estradiol의 효과로 SNc과 부신에서는 유의한 증가를 보인데 비해 시상하부에서는 유의한 감소를 관찰하였다. (ii) DBH 발현 정도는 OVX+Oil군에서는 SNc> 부신> 시상 하부 순으로, OVX+E$_2$군에서는 부신> SNc> 시상하부 순이었다. DBH 발현에 미치는 estradiol의 효과로 SNc에서는 유의한 감소, 부신에서는 유의한 증가, 그리고 시상하부에서는 통계적 유의성은 없으나 감소하는 경향을 보였다. (iii) PNMT의 발현의 경우 SNc와 시상하부에서는 기보고된 바와 같이 alternative splicing에 의해 110bp 차이의 크고 작은 두 형태의 cDNA(PNMTI & PNMTs)가 증폭되었으나 부신에서는 작은 cDNA 만이 관찰되었다. PNMTs의 발현 정도는 OVX+Oil군과 OVX+E$_2$군에서 공히 부신> 시상하부> SNc 순이었고, PNMTI의 발현은 SNc가 시상하부 보다 다소 높은 경향이었으나 유의성은 없었다. PNMTs 발현에 미치는 estradiol의 효과로 SNc에서는 유의한 감소, 부신에서는 유의한 증가, 그리고 시상하부에서는 통계적 유의성은 없으나 증가하는 경향을 보였다. 본 연구에서는 CA 생합성 효소들의 유전자 발현의 조절에 미치는 estrogen 의 영향이 세포 기원이 neural crest cell인 부신 수질은 물론 뇌의 상이한 지역간에서도 조직특이적임을 관찰하였다. 이러한 결과는 각 조직에서의 estrogen 수용체 유형의 차이 혹은 작용 모드와 각 효소 유전자 발현 사이에 중요한 상관관계가 있음을 시사한다.

  • PDF