• Title/Summary/Keyword: substantia nigra

Search Result 139, Processing Time 0.021 seconds

The Effect of Centrally Active Antihypertensive Agent on Biosynthetic Enzyme Activity of Neurotransmitter in Brain (중추성 항고혈압약이 뇌내 신경전달물질의 생합성 효소에 미치는 영향)

  • 윤재순
    • YAKHAK HOEJI
    • /
    • v.29 no.4
    • /
    • pp.165-175
    • /
    • 1985
  • It has been reported that clonidine is $\alpha_2$-adrenergic agonist, potnet new hypotensive drug in human with low dose. The change in blood pressure is implicated in the concentration, release, uptake and metabalism of catecholamine and activity of catecholamine synthesizing enzyme in specific brain areas. Thus the experiment was set up to investigate the effect on the enzyme activity of clonidine alone and that of clonidine pretreated with imipramine or tranylcypromine by measuring activity of the Dopa-forming enzyme, tyrosine hydroxylase (TH) and epinephrine forming enzyme, phenylethanolamine-N-methyl transferase (PNMT) in brain and adrenal gland. The TH activity in brainstem and substantia nigra is decreased by intraperitoneally administered clonidine 0.1mg/kg twice a day for 5 days, but increased in the rats pretreated with imipramine 10mg/kg intraperitoneally given 26 hrs and 5 hrs before decaptitation. However the TH activity in all regions of brain is increased in rats pretreated with tranylcypromine 10mg/kg intraperitoneally twice a day for 5 days. The effect of clonidine on TH activity is due to inhibition release of norepinephrine by activation of presynaptic $\alpha_2$-adrenoreceptor, axon terminal result in the decrease of TH activity in brain. The increasing of TH activity in brain results in attenuation of the role of clonidine by pretreated with imipramine or tranylcypromine in rats. The activity of PNMT was not significantly affected by clonidine, imipramine and tranylcypromine in adrenal gland.

  • PDF

[ ${\alpha}$ ]Synuclein Induces Unfolded Protein Response Via Distinct Signaling Pathway Independent of ER-membrane Kinases

  • Kang, Shin-Jung;Shin, Ki-Soon;Kim Kwon, Yun-Hee
    • Animal cells and systems
    • /
    • v.10 no.3
    • /
    • pp.115-120
    • /
    • 2006
  • Parkinson's disease (PD) is a neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Mutations in ${\alpha}$-synuclein have been causally linked to the pathogenesis of hereditary PD. In addition, it is a major component of Lewy body found in the brains of sporadic cases as well. In the present study, we examined whether overexpression of wild type or PD-related mutant ${\alpha}$-synuclein induces unfolded protein response (UPR) and triggers the known signaling pathway of the resulting endoplasmic reticulum (ER) stress in SH-SY5Y cells. Overexpression of wild type, A30P, and A53T ${\alpha}$-synuclein all induced XBP-1 mRNA splicing, one of the late stage UPR events. However, activation of ER membrane kinases and upregulation of ER or cytoplsmic chaperones were not detected when ${\alpha}$-synuclein was overexpressed. However, basal level of cytoplsmic calcium was elevated in ${\alpha}$-synuclein-expressing cells. Our observation suggests that overexpression of ${\alpha}$-synuclein induces UPR independent of the known ER membrane kinase-mediated signaling pathway and induces ER stress by disturbing calcium homeostasis.

Autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM) in a Parkinson's disease mouse model

  • Lee, Jin-Wook;Kwak, Jin-Young;Koh, Young-Mee;Ahn, Taek-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.341-349
    • /
    • 2018
  • The aim of this study was to evaluate autophagy-enhancing and neuroprotective effects of Wonji-Gobon mixture (WGM), a traditional Chinese prescription medication, in Parkinson's disease (PD) mouse models. Our investigation found that WGM increased the expression of both Beclin1 and LC3b-II proteins as measured with western blot in the BV2 cell line; both proteins play a role in autophagy. WGM also increased the autophagy expression as measured by fluorescence-activated cell-sorting analysis in the BV2 cell line. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD models, WGM significantly increased the amount of dopamine in a striatum-substantia nigra suspension, produced notable results in the forced swim test, and increased serotonin as measured by high-performance liquid chromatography analysis; these results are indicative of neuroprotective effects. In summary, our findings indicate that WGM treatment has neuroprotective effects that are partially mediated by autophagy enhancement.

Dopaminergic neuronal development in the embryonic mesencephalon of mouse

  • Kim, Mun-Ki;Lee, Si-Joon;Won, Chung-Kil
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.4
    • /
    • pp.203-207
    • /
    • 2020
  • This study presents neuronal migration pattern of dopamine (DA) neurons generated in separate regions occupying the ventral mesencephalic territory. A single pulse 5-bromodeoxyuridine (BrdU) was administered at embryonic day (E)10-E15. Distribution of tyrosine hydroxylase (TH) positive cells was determined at E13-postnatal day 0 (P0) by immunohistochemistry. BrdU positive cells labeled at E10 were spread out uniformly in the mesencephalon from E13 to E15, migrating through dorsal and ventral routes at E17 and P0. TH expression labeled at E10 was observed at E13 in the ventromedial region and clearly formed in the ventral tegmental area (VTA) at E15. At E17, TH expression in the substantia nigra (SN) was observed in the ventrolateral region, spreading more outward of the mesencephalon at P0. Generation of TH-positive cells labeled at E13 was also observed in VTA and SN of the mesencephalon at E17 and P0. The expression of these cells labeled after E15 was markedly decreased. These results demonstrated that an almost complete primary structure of DA neuron was formed at the early embryonic stage in the ventral mesencephalon, showing the most active neuronal migration was occurred at E13-E17.

Fishing for synucleinopathy models

  • Noor, Suzita Mohd;Norazit, Anwar
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.117-139
    • /
    • 2022
  • Synucleinopathies such as Parkinson's disease (PD) are incurable neurodegenerative conditions characterised by the abnormal aggregation of α-synuclein protein in neuronal cells. In PD, fibrillary synuclein aggregation forms Lewy bodies and Lewy neurites in the substantia nigra and cortex on the brain. Dementia with Lewy bodies and multiple system atrophy are also associated with α-synuclein protein abnormalities. α-synuclein is one of three synuclein proteins, and while its precise function is still unknown, one hypothesis posits that α-synuclein propagates from the enteric nervous system through the vagus nerve and into the brain, resulting in synucleinopathy. Studies on synucleinopathies should thus encompass not only the central nervous system but must necessarily include the gut and microbiome. The zebrafish (Danio rerio) is a well-established model for human neuronal pathologies and have been used in studies ranging from genetic models of hereditary disorders to neurotoxin-induced neurodegeneration as well as gut-brain-axis studies. There is significant genetic homology between zebrafish and mammalian vertebrates which is what makes the zebrafish so amenable to modelling human conditions but in the case of synucleinopathies, the zebrafish notably does not possess an α-synuclein homolog. Synuclein orthologs are present in the zebrafish however, and transgenic zebrafish that carry human α-synuclein have been generated. In addition, the zebrafish is a highly advantageous model and ideal replacement for reducing the use of mammalian models. This review discusses the application of the zebrafish as a model for synucleinopathies in efforts to further understand synuclein function and explore therapeutic strategies.

The couple of netrin-1/α-Synuclein regulates the survival of dopaminergic neurons via α-Synuclein disaggregation

  • Eun Ji Kang;Seung Min Jang;Ye Ji Lee;Ye Ji Jeong;You Jin Kim;Seong Su Kang;Eun Hee Ahn
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • The abnormal accumulation and aggregation of the misfolded α-synuclein protein is the neuropathological hallmark of all α-synucleinopathies, including Parkinson's disease. The secreted proteins known as netrins (netrin-1, netrin-3, and netrin-4) are related to laminin and have a role in the molecular pathway for axon guidance and cell survival. Interestingly, only netrin-1 is significantly expressed in the substantia nigra (SN) of healthy adult brains and its expression inversely correlates with that of α-synuclein, which prompted us to look into the role of α-synuclein and netrin-1 molecular interaction in the future of dopaminergic neurons. Here, we showed that netrin-1 and α-synuclein directly interacted in pre-formed fibrils (PFFs) generation test, real time binding assay, and co-immunoprecipitation with neurotoxin treated cell lysates. Netrin-1 deficiency appeared to activate the dopaminergic neuronal cell death signal pathway via α-synuclein aggregation and hyperphosphorylation of α-synuclein S129. Taken together, netrin-1 can be a promising therapeutic molecule in Parkinson's disease.

Somatodendritic organization of pacemaker activity in midbrain dopamine neurons

  • Jinyoung Jang;Shin Hye Kim;Ki Bum Um;Hyun Jin Kim;Myoung Kyu Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.165-181
    • /
    • 2024
  • The slow and regular pacemaking activity of midbrain dopamine (DA) neurons requires proper spatial organization of the excitable elements between the soma and dendritic compartments, but the somatodendritic organization is not clear. Here, we show that the dynamic interaction between the soma and multiple proximal dendritic compartments (PDCs) generates the slow pacemaking activity in DA neurons. In multipolar DA neurons, spontaneous action potentials (sAPs) consistently originate from the axon-bearing dendrite. However, when the axon initial segment was disabled, sAPs emerge randomly from various primary PDCs, indicating that multiple PDCs drive pacemaking. Ca2+ measurements and local stimulation/perturbation experiments suggest that the soma serves as a stably-oscillating inertial compartment, while multiple PDCs exhibit stochastic fluctuations and high excitability. Despite the stochastic and excitable nature of PDCs, their activities are balanced by the large centrally-connected inertial soma, resulting in the slow synchronized pacemaking rhythm. Furthermore, our electrophysiological experiments indicate that the soma and PDCs, with distinct characteristics, play different roles in glutamate-induced burst-pause firing patterns. Excitable PDCs mediate excitatory burst responses to glutamate, while the large inertial soma determines inhibitory pause responses to glutamate. Therefore, we could conclude that this somatodendritic organization serves as a common foundation for both pacemaker activity and evoked firing patterns in midbrain DA neurons.

Effects of Fetal Mesencephalic Cell Grafts on the Intrastriatal 6-hydroxydoapmine Lesioned Rats

  • Joo, Wan Seok;Nam, Eun-Joo;Im, Heh-ln;Jung, Jin-Ah;Lee, Eun-Sun;Hwang, Yu-Jin;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.245-251
    • /
    • 2004
  • The effects of fetal mesencephalic cell grafts on the restoration of nigrostriatal dopaminergic function were studied in the intrastriatal 6-hydroxydopamine-lesioned rats. Four weeks after lesioning, transplantation of ventral mesencephalic cells from embryonic day 14 fetuses showed the number of tyrosine hydroxylase (TH) positive cells and fiber outgrowth in the grafted striatum, and significantly ameliorated symptomatic motor behavior of the animals, as determined by apomorphine-induced rotation. Furthermore, in substantia nigra pars compacta (SNc), the numbers of TH + cells and fibers were markedly restored. Dopamine content of ipsilateral SNc was close to that of contralateral SNc $(91.9{\pm}9.8%)$ in the transplanted animals, while the ratio was approximately 32% in sham-grafted animals. These results indicate that grafted cells restored the activity for the dopaminergic neurons located in SNc, although they were transplanted into striatum. In addition, we showed that the implanted fetal cells expressed high level of glial cell line-derived neurotrophic factor (GDNF), suggesting that the transplanted fetal cells might serve as a dopamine producer and a reservoir of neurotrophic factors. These results may be helpful in consideration of the therapeutic transplantation at early stage of PD.

Role of tetrahydrobiopterin in dopaminergic cell death: Relevance to Parkinson's disease

  • Choi, Hyun-Jin;Hwang, On-You
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2005.04a
    • /
    • pp.53-60
    • /
    • 2005
  • Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting $1\%$ of the population above the age of 65 and is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although the underlying cause of dopaminergic cell death or the mechanism by which these cells degenerate is still not clearly understood, oxidative stress, mitochondrial dysfunction, and protein misfolding are thought to play important roles in the dopaminergic degeneration in PD. Tetrahydrobiopterin (BH4) is synthesized exclusively in the monoaminergic, including dopaminergic, cells and serves as an endogenous and obligatory cofactor for syntheses of the potential oxidative stressors dopamine and nitric oxide. In addition to its contribution toward the syntheses of these two potentially toxic molecules, BH4 itself can directly generate oxidative stress. BH4 undergoes oxidation during the hydroxylation reaction as well as nonenzymatic autooxidation to produce hydrogen peroxide and superoxide radical. We have previously suggested BH4 as an endogenous molecule responsible for the dopaminergic neurodegeneration. BH4 exerts selective toxicity to dopamine-producing cells via generation of oxidative stress, mitochondrial dysfunction, and apoptosis. BH4 also induces morphological, biochemical, and behavioral characteristics associated with PD in vivo. BH4 as well as enzyme activity and gene expression of GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis pathway, are readily upregulated by cellular changes such as calcium influx and by various stimuli including stress situations. This points to the possibility that cellular availability of BH4 might be increased in aberrant conditions, leading to increased extracellular BH4 subsequent degeneration. The fact that BH4 is specifically and endogenously synthesized in dopaminergic cells, Is readily upregulated, and generates oxidative stress-related cell death provides physical relevance of this molecule as an attractive candidate with which to explain the mechanism of pathogenesis of PD.

  • PDF

Neuroprotective Effects of Herbal Ethanol Extracts from Gynostemma pentaphyllum on L-DOPA Therapy in 6-hydroxydopamine-lesioned Rat Model of Parkinson's Disease (돌외 에탄올 추출물 엑스가 6-hydroxydopamine-유도 파킨슨병 백서 모델에서의 L-DOPA 요법에 미치는 영향)

  • Suh, Kwang-Hoon;Choi, Hyun-Sook;Shin, Keon-Seong;Hwang, Bang-Yeon;Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • The neuroprotective effects of herbal ethanol extracts from Gynostemma pentaphyllum (GP-EX) in 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease treated with L-DOPA were investigated. Rats were prepared for the Parkinson's disease model by 6-OHDA-lesioning for 14 days. The rats were then treated with L-DOPA (10 and 20 mg/kg) with or without the oral administration of GP-EX (30 mg/kg, daily) for 28 days. L-DOPA (20 mg/kg) treatment for 28 days enhanced dopaminergic neuronal cell death in 6-OHDA-lesioned rat groups, but L-DOPA (10 mg/kg) did not. However, the oral administration of GP-EX (30 mg/kg) for 28 days ameliorated the enhanced neurotoxic effects induced by chronic L-DOPA treatment in 6-OHDA-lesioned rat groups by increasing tyrosine hydroxylase (TH)-immunohistochemical staining and the number of TH-immunopositive cells surviving in the substantia nigra. In addition, GP-EX administration (30 mg/kg) for 28 days recovered the levels of dopamine and norepinephrine of the striatum in 6-OHDA-lesioned rat groups, which were markedly reduced by L-DOPA treatment (20 mg/kg). GP-EX (30 mg/kg) did not produce any signs of toxicity, such as weight loss, diarrhea, or vomiting in rats during the 28-day treatment period. These results suggest that GP-EX has protective functions against chronic L-DOPA-induced neurotoxic reactions in dopaminergic neurons in the 6-OHDA-lesioned rat model of Parkinson's disease. Therefore, GP-EX may be beneficial in the prevention of adverse symptoms in parkisonian patients.