• Title/Summary/Keyword: subsonic wind tunnel

Search Result 83, Processing Time 0.018 seconds

Effects of Pulsating Jet Blowing on Stall Control of Two Dimensional Elliptic Airfoil (이차원 타원형 날개꼴의 실속제어에서 간헐제트 브로잉의 효과)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jeong, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.1-8
    • /
    • 2005
  • This paper explored the effects of separation control through the use of pulsating jet blowing on a two dimensional elliptical airfoil. To develop an active control technique of flow separation, a flow control actuator utilizing continuous/pulsed jet of pressurized air was designed and installed in a wind tunnel testing model of elliptic wing. PIV measurement and flow visualization of the wing near field were conducted to access the feasibility and effectiveness of the pulsed jet blowing on controlling the stall of the elliptical wing in subsonic flow. PIV experimental results show that separation control can provide significant reduction in turbulent flow wake and separation bubbles by jet blowing. The pulsating jet blowing is more effective on the separation control than continuous one. Increased jet frequency suppressed the turbulent separated flow wake effectively at even higher AOAs.

Comparative Study of Tip Clearance Loss in Impulse and Reaction Turbine Cascades (충동터빈과 반동터빈 캐스케이드에서의 팁 간극 손실에 대한 비교 연구)

  • Park, Kyung-Wook;Jung, Eun-Hwan;Song, Seung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.145-148
    • /
    • 2008
  • Korea Aeronautics Research Institute (KARI) is developing a turbo pump that has 1-stage impulse turbine and relatively high tip clearance for safety. The objective of this research is to investigate the effect of reaction on tip clearance loss in axial turbines. Both cascades were tested in a subsonic wind tunnel. In each cascade, total pressure was measured for tip clearance ranging from 1% to 20% of chord. In results, increasing tip clearance, total pressure loss in reaction turbines is continually increased but impulse turbines keep almost same level of mass averaged total pressure loss. When tip clearance becomes more than 10% of chord, mass-averaged total pressure loss in impulse turbines is less than in reaction. This means that when tip clearance is more than 10% of chord, impulse turbines have better efficiency than reaction turbines.

  • PDF

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.