• Title/Summary/Keyword: subsoil

Search Result 253, Processing Time 0.035 seconds

Ground-Structure Seismic Interaction-Induced Rocking Behavior and the Uplift Behavior of Underground Hollow Structure (지반-구조물 동적 상호작용에 의한 Rocking현상과 그에 따른 지하 중공구조물의 부상거동)

  • Kang, Gi-Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.85-94
    • /
    • 2012
  • This paper described a centrifuge study in order to investigate ground-underground hollow structure interaction-induced rocking behavior in liquefied ground. Uplift of the underground hollow structures is initiated due to liquefaction in sandy grounds when the ground is exposed to a strong shaking during earthquakes because the apparent unit weight of these structures is smaller than that of the liquefied soil. In order to evaluate the dynamic behavior of the underground hollow structure and the effects of original subsoil during the uplifting, model tests were performed by changing the relative density of the original subsoil and installing an acrylic box as a trench. The results of the present study show that rocking behavior of the underground hollow structure due to shear deformation of the surrounding subsoil or lateral movement from the original subsoil contributed to large magnitude of the uplift due to strong shaking.

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

3D numerical analysis of piled raft foundation for Ho Chi Minh City subsoil conditions

  • Amornfa, Kamol;Quang, Ha T.;Tuan, Tran V.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.183-192
    • /
    • 2022
  • Piled raft foundations are widely used and effective in supporting high-rise buildings around the world. In this study, a piled raft system was numerically simulated using PLAXIS 3D. The settlement comparison results between the actual building measurements and the three-dimensional (3D) numerical analysis, were in good agreement, indicating the usefulness of this approach for the evaluation of the feasibility of using a piled raft foundation in Ho Chi Minh City subsoil. The effects were investigated of the number of piles based on pile spacing, pile length, raft embedment on the settlement, load sharing, bending moments, and the shear force of the piled raft foundation in Ho Chi Minh City subsoil. The results indicated that with an increased number of piles, increased pile length, and embedding raft depth, the total and differential settlement decreased. The optimal design consisted of pile numbers of 60-70, corresponding to pile spacings is 5.5-6 times the pile diameter (Dp), in conjunction with a pile length-to-pile diameter ratio of 30. Furthermore, load sharing by the raft, by locating it in the second layer of stiff clay, could achieve 66% of the building load. The proposed model of piled raft foundations could reduce the total foundation cost by 49.61% compared to the conventional design. This research can assist practicing engineers in selecting pile and raft parameters in the design of piled raft foundations to produce an economical design for high-rise buildings in Ho Chi Minh City, Viet Nam, and around the world.

Influence of Fly Ash Application on Content of Heavy Metal in the Soil I. Content Change by the Application Rate (석탄회(石炭灰) 시용(施用)이 토양중(土壤中) 중금속함량(重金屬含量)에 미치는 영향(影響) I. 시용량(施用量)에 따른 함량변화(含量變化))

  • Kim, Bok-Young;Lim, Sun-Uk;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.65-71
    • /
    • 1994
  • This study was conducted to investigate the influence of treatment of fly ash on heavy metal contents in the arable soils. Rice was cultivated on the two types of paddy field(clay loam and sandy loam soil) with 0, 4, 8, 12t/10a of anthracite fly ash and bituminous coal fly ash, respectively. And soybean was cultivated on the same types of upland field with those of 0, 3, 6, 9t/10a, respectively. At the harvest time, the heavy metal contents in surface and subsoil were investigated. The results were summarized as follows : 1. Anthracite fly ash. 1) In the paddy field of clay loam, the contents of Cu and Zn in the surface soil and Cd and Ni in the subsoil were increased with the increase of the amount of fly ash applied, but the others didn't show that tendency. 2) In the paddy field of sandy loam, only the content of Fe was increased in the surface and subsoils. 3) In the case of upland soil, the concentration of Ni and Cr in the surface soil and Cd in the subsoil were increased in the clay loam soil, and those of Cr in the surface soil and Pb in the subsoil were increased in the sandy loam soil. 2. Bituminous coal fly ash 1) In the paddy field of clay loam, the contents of Cu and Zn in the subsoil were increased with increase of the amount of fly ash applied, but in the case of sandy loam, those of Pb and Ni in the surface soil were increased. 2) In the upland soil of clay loam, the concentration of Ni in the surface soil and Pb in the subsoil were increased. 3) In case of upland soil of sandy loam, the contents of Cr and Fe were increased in the surface and subsoil, respectively, but those of Cu and Mn were increased in the both of the surface and subsoil.

  • PDF

The Experimental Study on Load Sharing Ratio of Group Pile (무리말뚝의 하중분담율에 관한 실험적 연구)

  • Kwon, Oh-Kyun;Oh, Se-Bung;Kim, Jin-Bok;Park, Jong-Un
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.65-70
    • /
    • 2005
  • In this study, the large scale model tests were executed to estimate the Load Sharing Ratio(LSR) of raft in a piled footing under various conditions. The conditions such as the subsoil type, pile length, pile spacing, array type and pile installation method etc. were varied in the pile loading tests about the free-standing group piles and a piled footing. As the results of this study, it was found that there were no differences of the load-settlement curves, along with the pile installation method and subsoil type. The piles supported most of the external load until a yielding load of the piled footing, but the raft supported a considerable load after a yielding load. And it was also found that the LSR didn't be affected by the pile installation method and the subsoil type. As the relative density of sands increased, the LSR decreased. As the pile spacing was wider and the pile length increased, there was a tendancy for the LSR to increase.

  • PDF

Fast analytical estimation of the influence zone depth, its numerical verification and FEM accuracy testing

  • Kuklik, Pavel;Broucek, Miroslav;Kopackova, Marie
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.635-647
    • /
    • 2009
  • For the calculation of foundation settlement it is recommended to take into account so called influence zone inside the subsoil bellow the foundation structure. Influence zone inside the subsoil is the region where the load has a substantial influence on the deformation of the soil skeleton. The soil skeleton is pre-consolidated or over consolidated due to the original geostatic stress state. An excavation changes the original geostatic stress state and it creates the space for the load transferred from upper structure. The theory of elastic layer in Westergard manner is selected for the vertical stress calculation. The depth of influence zone is calculated from the equality of the original geostatic stress and the new geostatic stress due to excavation combined with the vertical stress from the upper structure. Two close formulas are presented for the influence zone calculation. Using ADINA code we carried out several numerical examples to verify the proposed analytical formulas and to enhance their use in civil engineering practice. Otherwise, the FEM code accuracy can be control.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

Assessment of Subsoil Compaction by Soil Texture on Field Scale

  • Cho, Hee-Rae;Jung, Kang-Ho;Zhang, Yong-Seon;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.628-633
    • /
    • 2015
  • It is necessary to assess soil physical properties and crop growth treated by compaction to establish the soil management standard. This study evaluated the bulk density, strength and crop growth after subsoil compaction for sandy loam and loam on the field in Suwon, Korea. The treatments were compaction and deep tillage. Sandy loam and loam were classified to coarse soil and fine soil, respectively, depending on clay contents. In coarse soil, bulk density of compacted plot was 8~17% greater than control and deep tilled plot. The root growth was worse in compacted plot compared with control. In fine soil, plow pan was not observed in deep tilled plot with 5~19% smaller bulk density than compacted plot and control. Deep tillage improved the crop growth. The soil physical properties by compaction were dependent on clay content and crop growth limit depended on the traffic driving.

Decadal Changes in Subsoil Physical Properties as Affected by Agricultural Land Use Types in Korea (농업적 토지이용에 따른 토양물리성 변동 평가)

  • Cho, Hee-Rae;Zhang, Yong-Seon;Han, Kyung-Hwa;Ok, Jung-Hun;Hwang, Seon-Ah;Lee, Hyub-Sung;Kim, Dong-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.567-575
    • /
    • 2018
  • The soil physical quality is a core factor in achieving two of sustainable agriculture's goals: productivity and environment. The purpose of this study was to assess changes in soil physical properties for nearly a decade through periodic monitoring of three cultivation types: upland, orchard, and paddy. Field surveys and lab analysis were conducted to determine the soils physical properties after every 4 years; upland (2009, 2013, and 2017), orchard (2010 and 2014), and paddy (2011 and 2015). In each year soil samples from 162-338 sites were collected. The bulk density of upland subsoil decreased from $1.53Mg\;m^{-3}$ to $1.50Mg\;m^{-3}$ while the plowing depth and subsoil organic matter increased from 13.7 cm to 19.5 cm and from $12.6g\;kg^{-1}$ to $18.3g\;kg^{-1}$ respectively during the period 2009-2017. Plowing depth for orchard increased from 16.7 cm to 18.9 cm. However, organic matter content decreased from $15.9g\;kg^{-1}$ to $15.4g\;kg^{-1}$ during the 2010-2014 period. For paddy, plowing depth and subsoil organic matter decreased from 17.5 cm to 16.7 cm and from $17.5g\;kg^{-1}$ to $15.8g\;kg^{-1}$ respectively. The subsoil bulk density increased from $1.47Mg\;m^{-3}$ to $1.52Mg\;m^{-3}$ from 2011-2015. Excess ratio for soil physical standards increased from 16% to 22% in orchard, 56% to 62% in paddy, and decreased from 41% to 29% in upland. The overall soil physical quality had been ameliorated for upland, but degraded for paddy. Improved tillage practices and application of appropriate organic matter is necessary to enhance the quality of soils, especially in the paddy field.

Effect of Forest Fire on the Microbial Community Activity of Forest Soil according to the Difference between Geology and Soil Depth (산불이 지질과 토심의 차이에 따른 산림토양 미생물 군집 활성도에 미치는 영향에 대한 연구)

  • Ji Seul Kim;Jun Ho Kim;Hyeong Chul Jeong;Eun Young Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • The effects of forest fires on the activity of microbial communities in topsoil and subsoil were investigated. Samples were collected from Korean forest soils comprising mainly igneous and sedimentary rocks. Analysis of beta-glucosidase, found higher microbial activity in sedimentary rocks than in igneous rocks. Enzyme activity was not observed immediately after fire, but was restored over time. The enzyme activity of subsoil was inhibited by 33~46% compared with that in the topsoil, regardless of soil damage. The effect of fire on the availability of microbial substrate was investigated using EcoPlate. The percentages of average well color development values of damaged and normal topsoil were 52.7~56.8% and 62.3~83.6%, respectively. Forest fires appear to affect the diversity and substrate availability of the subsoil microbial community by accelerating the decomposition of soil organic matter. The Shanon index, representing microbial biodiversity, was high in the topsoil of all samples; it was higher for soil microorganisms in sedimentary rocks than in igneous rocks, and higher in topsoil than in subsoil.