• Title/Summary/Keyword: submarine robot

Search Result 6, Processing Time 0.024 seconds

Study on the UUV Operation via Conventional Submarine's Torpedo Tube (재래식 잠수함 어뢰발사관을 활용한 UUV 운용기법에 대한 연구)

  • Li, Ji-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Due to its unmanned feature and some of being matured underwater technologies, UUV(Unmanned Undersea Vehicle) is increasingly considered as a utility player in today's battle-field. The operational benefit of submarine-based UUV operation could be enormous yet the integration challenges are significant, particularly for most of small conventionally-powered submarines. In this paper, we consider UUV operational methodology via the conventional submarine's torpedo tube. Two previous attempts having been done to retrieve the UUV through torpedo tube are reviewed, and their pros and cons are also analyzed. Then, an alternative option is proposed for UUV operation via torpedo tube. In addition, some of practical challenges are also discussed in the paper.

Submarine Robot Actuated by Shape Memory Alloy (형태기억합금에 의하여 구동되어지는 해저로봇)

  • Shimada, Heihachi;Furuya, Yasubumi;Park, Young Chul;Oh, Sae Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.41-47
    • /
    • 1990
  • 최근 열에너지를 기계에너지로 변환이 가능한 신소재인 형상기억합금으로 제작된 새로운 형태의 actuator를 이용한 해저로봇의 개발에 관하여 많은 연구들이 행하고 있다. 저자들은 로봇의 모양을 실제 동물의 형태인 "게" 모양으로 하고, 로봇을 구동시키는 게의 다리의 모든 연결부분의 인공근육을 Ni-Ti계 형상기억합금 스프링 또는 와이어로 구성되어져 있으며, 마이크로 컴퓨터에 의하여 구동이 자유로이 조절이 가능한 게 형태의 모양 로봇을 실제의 1/20크기로 제작하였다. 이 로봇의 특징은 구조가 간단하고, 고강도, 고내식성 그리고 부드럽고 자유롭게 3차원적 동작이 가능하다는 것을 들 수 있다. 해저 로봇의 최종목표는 심해자원의 탐사 및 채굴이 이용하는 것이다. 따라서 본 연구에서는 그 가능성 및 기술적 문제 그리고 미래의 이러한 형상기억합금 로봇에 의한 심해자원 탐사를 위한 국제적인 협력의 필요성에 대하여 연구 검토하고자 한다. 검토하고자 한다.

  • PDF

A Study on Construction of Control System for Wireless Remote Control of Small Field Robot (소형 필드로봇의 무선 원격 제어를 위한 조종시스템 구축에 관한 연구)

  • Choi, Seong Woong;Le, Quang Hoan;Son, Tae Gon;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.103-112
    • /
    • 2020
  • Field robots are used in various fields, such as agriculture, forestry, manufacturing, and construction; their use has recently expanded to include submarine areas. Field robots can aid in various tasks, such as soil transport, ground clearance, and dismantling of buildings. As field robots are used in a variety of different areas, the difficulty of the work is also quite varied. Increased difficulty is associated with an increased risk of accidents involving the field robot. In order to reduce the accident rate of field robot workers, the need for digitalization and automation of field robots is becoming more of an issue. To this end, it is necessary to study a system that enables workers to do their work without directly contacting a field robot. Therefore, in this paper, we introduce a control system for wireless remote control of a small field robot. The field robot can be wirelessly controlled by a worker in a remote location if the worker cannot be present at the work site. The implemented remote system is tested according to the type of work, and the operating characteristics of the remote system are assessed.

Consideration of Launch and Recovery Systems for Operation of Underwater Robot from Manned Platform (유인플랫폼에서의 수중로봇 운용을 위한 진수 및 회수 체계 고찰)

  • Lee, Ki-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.141-149
    • /
    • 2016
  • In this technical note, the issues and challenges for the launch and recovery systems (LARS) and related techniques for the operation of an underwater robot from a manned platform are considered. Various types of LARS fitted to specific manned platforms, surface or sub-surface, are surveyed and categorized. The current UUV launch and recovery systems from surface ships and submarines utilize time consuming processes. As underwater robot technologies evolve and their roles are defined, safe and effective launch and recovery methods should be developed capable of reliable and efficient operations, particularly at a high sea state. To improve the existing underwater robot capabilities, LARS technology maturation is required in the near term, leading to the ability to incorporate autonomous LARS for an underwater robot on a manned platform. In the near term, particular emphasis should be placed on UUV LARS, which are surface ship based, with submarine based systems in the long term. Furthermore, for a dedicated LARS ship, independent of the existing host ship type, particular emphasis should be given to fully utilizing the capabilities of underwater robots.

DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

  • Jang, You Hyun;Kim, Jong Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.