• Title/Summary/Keyword: subcooling

Search Result 220, Processing Time 0.02 seconds

The Generic Analysis Method for Core Flow Instability

  • Jun, Byung-Soon;Park, Eung-Jun;Park, Jong-Ryool
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.335-341
    • /
    • 1997
  • The generic analysis method for core flow instability is suggested to confirm that the core flow instability would not occur on PWR conditions. For the confirmation, the stability criteria of each fuel type are provided. Instability investigations in various accident conditions prove that the locked rotor accident is the most limiting case to instability. Parametric Effects are surveyed and in good agreement with available studies. The effects of heat flux distribution become negligible as the subcooling number is decreased. The power margin to instability is calculated quantitatively in various accident conditions.

  • PDF

환상유로에서의 임계열유속에 관한 실험적 연구

  • 천세영;전형길;정흥준;문상기;민경호;정문기
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.343-348
    • /
    • 1996
  • 한국원자력연구소에서는 광범위한 열유동조건에서 CHF 실험을 수행하기 위해 고온, 고압으로 운전할 수 있는 RCS 열수력 Loop를 제작하고 기초 실험자료를 얻기 위해 환상 유로에서 CHF 측정실험을 수행하였다. 실험은 압력 1.82Mpa, 질량유속 300~566kg/$m^2$.s Test Section입구 Subcooling 18$^{\circ}C$ 및 47$^{\circ}C$의 범위에서 수행되었다. CHF 실험자료와 Doerffer의 CHF 상관식을 비교한 결과 상관식은 실험치 보다 최고 160% 크게 예측하였고 Doerffer 상관식은 저유량 영역에서 적용이 어려워질 것으로 예상되었다. 따라서 저유량 영역의 체계적인 CHF 실험자료가 필요하다.

  • PDF

Performance Analysis of an Ammonia(R717) and Carbon Dioxide(R744) Two-Stage Cascade Refrigeration System ($NH_3-CO_2$를 사용하는 이원 냉동 시스템의 성능 분석)

  • Son, Chang-Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, cycle performance analysis of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in the ammonia(R717) high temperature cycle and the carbon dioxide low temperature cycle. The main results were summarized as follows : The COP of two-stage cascade refrigeration system increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of two-stage cascade refrigeration system decreases with the increasing condensing temperature, but increases with the increasing evaporating temperature. And the COP of two-stage cascade refrigeration system increases with increasing the compressor efficiency. Therefore, superheating and subcoolng degree, compressor efficiency, and evaporating and condensing temperature of $NH_3-CO_2$(R717-R744) two-stage cascade refrigeration system have an effect on the COP of this system.

Layer Growth Rate of Benzene Layer from Benzene-Cyclohexane Mixtures in Layer Crystallizer (경막 결정화기에서 벤젠-시클로헥산 혼합물로부터 벤젠의 결정성장속도)

  • Kim, Kwang-Joo;Lee, Jung-Min;Ryu, Seung-Kon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.308-314
    • /
    • 1996
  • The crystal growth rate of benzene from benzene-cyclohexane mixtures at a cylindrical layer crystallizer was determined from the slope of the line of correlation between operating time and layer thickness. The thickness of crystal layer was obtained from the amount of crystal deposited on the cooled wall surface of the crystallizer. The crystal growth rate was related with the degree of subcooling, which was defined as the difference between temperature of melt and that of growing crystal surface. The linear crystal growth rate for binary mixtures was proportional to the second power of the degree of subcooling. Equation model which was obtained from data through the rate of heat and mass transfer in the crystallizer and thus can tell crystal thickness and surface temperature of crystal layer according to the elapsed time was presented and successfully correlated to the experimental data. For the benzene-cyclohexane mixtures contains 5wt% and 10wt% of cyclohexane, the comparison of experimental data with calculation using model equation was done for crystal thickness corresponding to the various cooling temperatures.

  • PDF

Exergy Analysis of R744 OTEC Power Cycle with Operation Parameters (작동변수에 따른 R744용 해양온도차 발전 사이클의 엑서지 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Baek, Seung-Moon;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1036-1042
    • /
    • 2012
  • This paper describes an analysis on exergy efficiency of R744 OTEC power system to optimize the design for the operating parameters of this system. The operating parameters considered in this study include subcooling and superheating degree, evaporation and condensation temperature, and turbine and pump efficiency, respectively. The main results are summarized as follows : As the evaporation temperature, superheating degree, and turbine and pump efficiency of R744 OTEC power system increases, the exergy efficiency of this system increases, respectively. But condensation temperature and subcooling degree of R744 OTEC power system increases, the exergy efficiency of this system decreases, respectively. The effect of evaporation temperature and pump efficiency on R744 OTEC power system is the largest and the lowest among operation parameters, respectively. Therefore, the refrigerant temperature in the evaporator must be closely to the surface seawater temperature to enhance the exergy efficiency of R744 OTEC power system.

Flow Characteristics of R600a in an Adiabatic Capillary Tube (단열 모세관내 R600a의 유동 특성)

  • Ku, Hak-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 2010
  • In this paper, flow characteristics of R600a in an adiabatic capillary tube were investigated employing the homogeneous flow model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Thermodynamic and transport properties of R600a are calculated employing EES property code. Flow characteristics analysis of R600a in an adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include condensation temperature, evaporation temperature, subcooling degree and inner diameter tube of the adiabatic capillary tube. The main results were summarized as follows: condensation and evaporation temperature, inlet subcooling degree and inner diameter tube of an adiabatic capillary tube using R600a have an effect on length of an adiabatic capillary tube. The length of an adiabatic capillary tube using R600a is expressed to the correlation shown in Eq. (15).

A Comparative Study on the Formation of Methane Hydrate Using Natural Zeolite and Synthetic Zeolite 5A (천연 제올라이트와 합성 제올라이트 5A를 이용한 메탄 하이드레이트의 생성에 대한 비교 연구)

  • Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.24-32
    • /
    • 2012
  • Natural gas hydrates have a high potential as the 21st century new energy resource, because it have a large amount of deposits in many deep-water and permafrost regions of the world widely. Natural gas hydrate is formed by physical binding between water molecule and gas mainly composed of methane, which is captured in the cavities of water molecules under the specific temperature and pressure. $1m^3$ methane hydrate can be decomposed to the methane gas of $172m^3$ and water of $0.8m^3$ at standard condition. Therefore, there are a lot of practical applications such as separation processes, natural gas storage transportation and carbon dioxide sequestration. For the industrial utilization of methane hydrate, it is very important to rapidly manufacture hydrate. However, when methane hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. So in this study, hydrate formation was experimented by adding natural zeolite and Synthetic zeolite 5A in distilled water, respectively. The results show that when the Synthetic zeolite 5A of 0.01 wt% was, the amount of gas consumed during the formation of methane hydrate was higher than that in the natural zeolite. Also, the natural zeolite and Synthetic zeolite 5A decreased the hydrate formation time to a greater extent than the distilled water at the same subcooling temperature.

Development of Cascade Refrigeration System Using R744 and R404A - Analysis on Performance Characteristics - (R744-R404A용 캐스케이드 냉동시스템 개발에 관한 연구(1) - 성능 특성에 관한 분석 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.182-188
    • /
    • 2011
  • In this paper, analysis on the performance characteristics of R744-R404A cascade refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree, compressor efficiency, and condensing and evaporating temperature in R404A high- and R744 low-temperature cycle, respectively. The main results were summarized as follows : It was observed that the highest COP of the system is achieved by higher superheating degree in R744 cycle than that in R404A cycle. The COP of the system increased by giving the subcooling degree in both cycles. The COP of the cascade system is the highest value when the system is operated at an optimum evaporation temperature.

A Study on the Methane Hydrate Formation Using Natural Zeolite (천연제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;An, Eoung-Jin;Kim, Dae-Jin;Jeon, Yong-Han;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.259-264
    • /
    • 2011
  • Gas hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. $1\;m^3$ hydrate of pure methane can be decomposed to the methane gas of $172\;m^3$ and water of $0.8\;m^3$ at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store of natural gas in large quantity. Especially the transportation cost is known to be 18~25% less than the liquefied transportation. However, when methane gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and the increment of the amount of captured gas by adding zeolite into pure water. The results show that when the zeolite of 0.01 wt% was added to distilled water, the amount of captured gas during the formation of methane hydrate was about 4.5 times higher than that in distilled water, and the methane hydrate formation time decreased at the same subcooling temperature.

Performance Analysis of Integral Receiver/Dryer Condenser for Automobile (자동차용 리시버/건조기 일체형 응축기의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2007
  • The important problems from the point of view of preventing global warming are to save the power consumption of automotive air-conditioning systems and reduce the refrigerant amount filled. To achieve such requirements, integral receiver/dryer (R/D) condensers were developed recently. Typical integral R/D condensers have extra headers that play the role of R/D. Except an extra header and somewhat complex tube array resulting from the extra header, the most integral R/D condensers have almost the same specification that tube has multi channels, fin has louvers, flow in tube is parallel, etc. When integral condensers are applied, it is known that the refrigerating effect increases, resulting from the increase of subcooling degree in condenser, and the refrigerant amount used saves. In spite of several merits, integral condensers have not been applied a lot. That is why there is an uncertainty in performance, using integral condensers. The objective of this study is to theoretically optimize the tube array in an integral R/D condenser that is really being applied to some vehicles. The tube array has a great effect on the performance of the integral condenser as well as common ones. Through computer simulation, we could see that the tube array, 14-6-3-5-3-4, in the same condenser was the best, comparing heat release rate, pressure drop, etc. to the real array, 17-5-3-3-2-5. It should be noted that the optimization is based on the condenser performance only.