• Title/Summary/Keyword: subcontroller

Search Result 2, Processing Time 0.019 seconds

Concurrent Relay-PID Control for Motor Position Servo Systems

  • Li, Guomin;Tsang, Kai Ming
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.234-242
    • /
    • 2007
  • A Concurrent Relay-PID controller (CRPID) for motor position servo systems is proposed in this paper. The proposed controller is composed of a deadband-relay subcontroller and a parallel PID subcontroller. The deadband-relay subcontroller is capable of improving the transient system performance while the PID subcontroller is responsible for near steady state system regulation. Systematic design methods for various controller components are developed. Design procedures are illustrated by an example. The proposed hybrid scheme is applied to a DC motor position servo system. Both numerical and experimental results demonstrate that the proposed controller performs satisfactorily and is superior to PID control alone.

Position Control of Servo Motor using Hybrid Controller (하이브리드 제어기를 이용한 서보 전동기의 위치제어)

  • Kwon, Se-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • PID controllers are simple in structure and easy for implementation. However, they may produce large overshoots and over-oscillatory responses. Combining PID control with other control techniques often results in advanced hybrid schemes that are able to improve pure PID controllers. This paper proposes hybrid controller for position control system of servo motor. The proposed controller is composed of a subcontroller and a parallel PID controller. The subcontroller improves the transient system performance while the PID controller is mainly responsible for the steady-state system performance. A very promising advantage of this hybrid scheme, in terms of controller synthesis, is that the subcontrollers and controller components can be designed separately. Systematic design methods for various controller components are developed. The proposed hybrid scheme is applied to a DC motor position servo system. The effectiveness of the proposed controller is verified through the computer simulation results.

  • PDF