• Title/Summary/Keyword: subcarrier

Search Result 240, Processing Time 0.017 seconds

On OFDM Subcarrier Allocation Strategies for Soft Hand-off in Cellular Systems

  • Kim, Chan-Hong;Lee, Jung-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.784-793
    • /
    • 2012
  • This paper deals with subcarrier allocation strategies for soft hand-over in OFDMA-based cellular systems. Two possible subcarrier allocation methods are considered for soft hand-over. One method is to use an identical subcarrier set between the two cells participating in the hand-over. The other is to use different subcarrier sets between the two cells. As expected, the different subcarrier strategy is better in terms of diversity order and BER than the identical subcarrier strategy. It will be shown that the BER performance difference between the two strategies is more noticeable with contiguous subcarrier allocation. But the different subcarrier strategy consumes twice more frequency resources than the other, and there is a trade-off between the two strategies in terms of BER and frequency resources. By considering the trade-off, we also propose a subcarrier allocation strategy for soft hand-over.

Fixed Biased 4-D Multiple-Subcarrier Signal for Average Power Reduction in Optical Wireless Communication (Fixed bias를 가지는 4-D Multiple-Subcarrier 신호를 이용한 Optical Wireless 통신의 평균 전력 절감에 관한 연구)

  • 김해근
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.103-109
    • /
    • 2003
  • We have proposed the 4-Dimensional Multiple-Subcarrier Modulation with fixed bias in Optical Wireless Communications. Here, the 4-D signal vectors are derived from the optimization technique of signal waveforms maximizing the minimum distance between signal points in an n-dimensional Euclidean sphere. The resulting vectors are used in generating the output amplitude of impulse generator in a Multiple-Subcarrier Modulation scheme. We have achieved that the normalized power requirement of the proposed system is maximum 3 dB and 3.3 dB smaller than those of normal QPSK, Reserved Subcarrier, and Minimum Power scheme, respectively. Also, in the range of 1.125 ∼ 1.25 of the normalized bandwidth, the proposed system has maximum 3 dB, 2 ∼ 4 dB, 0 ∼ 3 dB smaller bandwidth requirement compare to normal QPSK, Res. Subcarrier, Min. Power schemes, respectively.

An Adaptive Subcarrier Allocation Scheme based on Comparison of Group Opportunity Cost (부반송파 그룹간 기회 비용 상호 비교에 기반한 적응 부반송파 할당 기법)

  • Kim, Young-Ok;Yoon, Byung-Wan;Lee, Young-Tark
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.55-58
    • /
    • 2007
  • An adaptive subcarrier allocation scheme based on comparative superiority of opportunity cost between groups is proposed for the enhancement of system capacity and its simple implementation at the base station of a multiuser OFDM system. The proposed algorithm is similar to the blockwise or the decentralized subcarrier allocation algorithm proposed by Xiaowen et al and Alen et al, respectively. In the proposed algorithm, however, all subcarriers are grouped according to the coherence bandwidth and the comparative superiority concept, which swaps the groups between users if the system capacity is increased, is adopted for the enhancement of system capacity. In addition, the proposed algorithm provides a simple solution for the conflict problem among users by reallocating only the conflicted groups and unassigned groups instead of reallocating entire groups. Simulation results demonstrate that the proposed algorithm increases the system capacity effectively over a static, an adaptive blockwise, and a decentralized subcarrier allocation algorithms.

  • PDF

An Efficient Adaptive Modulation Scheme for Wireless OFDM Systems

  • Lee, Chang-Wook;Jeon, Gi-Joon
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.445-451
    • /
    • 2007
  • An adaptive modulation scheme is presented for multiuser orthogonal frequency-division multiplexing systems. The aim of the scheme is to minimize the total transmit power with a constraint on the transmission rate for users, assuming knowledge of the instantaneous channel gains for all users using a combined bit-loading and subcarrier allocation algorithm. The subcarrier allocation algorithm identifies the appropriate assignment of subcarriers to the users, while the bit-loading algorithm determines the number of bits given to each subcarrier. The proposed bit-loading algorithm is derived from the geometric progression of the additional transmission power required by the subcarriers and the arithmetic-geometric means inequality. This algorithm has a simple procedure and low computational complexity. A heuristic approach is also used for the subcarrier allocation algorithm, providing a trade-off between complexity and performance. Numerical results demonstrate that the proposed algorithms provide comparable performance with existing algorithms with low computational cost.

  • PDF

Joint Subcarrier Matching and Power Allocation in OFDM Two-Way Relay Systems

  • Vu, Ha Nguyen;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.257-266
    • /
    • 2012
  • A decode-and-forward two-way relay system benefits from orthogonal frequency division multiplexing (OFDM) and relay transmission. In this paper, we consider a decode-and-forward two-way relay system over OFDMwith two strategies: A joint subcarrier matching algorithm and a power allocation algorithm operating with a total power constraint for all subcarriers. The two strategies are studied based on average capacity using numerical analysis by uniformly allocating power constraints for each subcarrier matching group. An optimal subcarrier matching algorithm is proposed to match subcarriers in order of channel power gain for both transmission sides. Power allocation is defined based on equally distributing the capacity of each hop in each matching group. Afterward, a modified water-filling algorithm is also considered to allocate the power among all matching groups in order to increase the overall capacity of the network. Finally, Monte Carlo simulations are completed to confirm the numerical results and show the advantages of the joint subcarrier matching, power allocation and water filling algorithms, respectively.

Joint Subcarrier and Bit Allocation for Secondary User with Primary Users' Cooperation

  • Xu, Xiaorong;Yao, Yu-Dong;Hu, Sanqing;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3037-3054
    • /
    • 2013
  • Interference between primary user (PU) and secondary user (SU) transceivers should be mitigated in order to implement underlay spectrum sharing in cognitive radio networks (CRN). Considering this scenario, an improved joint subcarrier and bit allocation scheme for cognitive user with primary users' cooperation (PU Coop) in CRN is proposed. In this scheme, the optimization problem is formulated to minimize the average interference power level at the PU receiver via PU Coop, which guarantees a higher primary signal to interference plus noise ratio (SINR) while maintaining the secondary user total rate constraint. The joint optimal scheme is separated into subcarrier allocation and bit assignment in each subcarrier via arith-metric geo-metric (AM-GM) inequality with asymptotical optimization solution. Moreover, the joint subcarrier and bit optimization scheme, which is evaluated by the available SU subcarriers and the allocated bits, is analyzed in the proposed PU Coop model. The performance of cognitive spectral efficiency and the average interference power level are investigated. Numerical analysis indicates that the SU's spectral efficiency increases significantly compared with the PU non-cooperation scenario. Moreover, the interference power level decreases dramatically for the proposed scheme compared with the traditional Hughes-Hartogs bit allocation scheme.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

A half subcarrier guard band spectrum assignment scheme for multi-user FBMC systems

  • Huang, Wei;Xu, Hongbo;Li, Zhongnian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.350-364
    • /
    • 2022
  • Traditionally, in multi-user multi-carrier systems, the neighboring subband will be gapped by one subcarrier, which is set as guard band to reduce multiple access interference (MAI) between neighboring subbands. The empty subcarrier for guard band will degrade the spectral efficiency of the whole system. In order to enhance the spectral efficiency of multi-user filter bank multiple carrier (FBMC) systems, a new subband allocation method is introduced, in which the neighboring subband is gapped by half subcarrier instead of one subcarrier. Meanwhile, in order to implement the proposed resource allocation scheme, an optimized FBMC prototype filter is designed to decrease the inter-subband interference to the neighboring subband. The detailed simulations about the comparison between the proposed spectrum assignment and traditional FBMC are given, as well as the performance in the different interference scenarios. The simulation results show that the combination of the proposed spectrum assignment scheme and the optimized filter has better performance compared to the traditional scheme. The proposed scheme can be used in the system which serves massive users to get higher spectrum efficiency.

Adaptive OFDMA with Partial CSI for Downlink Underwater Acoustic Communications

  • Zhang, Yuzhi;Huang, Yi;Wan, Lei;Zhou, Shengli;Shen, Xiaohong;Wang, Haiyan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.387-396
    • /
    • 2016
  • Multiuser communication has been an important research area of underwater acoustic communications and networking. This paper studies the use of adaptive orthogonal frequency-division multiple access (OFDMA) in a downlink scenario, where a central node sends data to multiple distributed nodes simultaneously. In practical implementations, the instantaneous channel state information (CSI) cannot be perfectly known by the central node in time-varying underwater acoustic (UWA) channels, due to the long propagation delays resulting from the low sound speed. In this paper, we explore the CSI feedback for resource allocation. An adaptive power-bit loading algorithm is presented, which assigns subcarriers to different users and allocates power and bits to each subcarrier, aiming to minimize the bit error rate (BER) under power and throughput constraints. Simulation results show considerable performance gains due to adaptive subcarrier allocation and further improvement through power and bit loading, as compared to the non-adaptive interleave subcarrier allocation scheme. In a lake experiment, channel feedback reduction is implemented through subcarrier clustering and uniform quantization. Although the performance gains are not as large as expected, experiment results confirm that adaptive subcarrier allocation schemes based on delayed channel feedback or long term statistics outperform the interleave subcarrier allocation scheme.

Frequency and Subcarrier Reuse Partitioning for FH-OFDMA Cellular Systems

  • Lee, Yeonwoo;Kim, Kyung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.601-609
    • /
    • 2013
  • One of the most serious factors constraining the next generation cellular mobile consumer communication systems will be the severe co-channel interference experienced at the cell edge. Such a capacity-degrading impairment combined with the limited available spectrum resource makes it essential to develop more spectrally efficient solutions to enhance the system performance and enrich the mobile user's application services. This paper proposes a unique hybrid method of frequency hopping (FH) and subcarrier-reuse-partitioning that can maximize the system capacity by efficiently utilizing the available spectrum while at the same time reduce the co-channel interference effect. The main feature of the proposed method is that it applies an optimal combination of different frequency reuse factors (FRF) and FH-subcarrier allocation patterns into the partitioned cell regions. From the simulation results, it is shown that the proposed method can achieve the optimum number of subcarrier subsets according to the frequency-reuse distance and results in better performance than the fixed FRF methods, for a given partitioning arrangement. The results are presented in the context of both blocking probability and BER performances. It will also be shown how the proposed scheme is well suited to FH-OFDMA based cellular systems aiming at low co-channel interference performance and optimized number of subcarriers.