• Title/Summary/Keyword: sub-standard construction

Search Result 112, Processing Time 0.021 seconds

The effect of Big-data investment on the Market value of Firm (기업의 빅데이터 투자가 기업가치에 미치는 영향 연구)

  • Kwon, Young jin;Jung, Woo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.99-122
    • /
    • 2019
  • According to the recent IDC (International Data Corporation) report, as from 2025, the total volume of data is estimated to reach ten times higher than that of 2016, corresponding to 163 zettabytes. then the main body of generating information is moving more toward corporations than consumers. So-called "the wave of Big-data" is arriving, and the following aftermath affects entire industries and firms, respectively and collectively. Therefore, effective management of vast amounts of data is more important than ever in terms of the firm. However, there have been no previous studies that measure the effects of big data investment, even though there are number of previous studies that quantitatively the effects of IT investment. Therefore, we quantitatively analyze the Big-data investment effects, which assists firm's investment decision making. This study applied the Event Study Methodology, which is based on the efficient market hypothesis as the theoretical basis, to measure the effect of the big data investment of firms on the response of market investors. In addition, five sub-variables were set to analyze this effect in more depth: the contents are firm size classification, industry classification (finance and ICT), investment completion classification, and vendor existence classification. To measure the impact of Big data investment announcements, Data from 91 announcements from 2010 to 2017 were used as data, and the effect of investment was more empirically observed by observing changes in corporate value immediately after the disclosure. This study collected data on Big Data Investment related to Naver 's' News' category, the largest portal site in Korea. In addition, when selecting the target companies, we extracted the disclosures of listed companies in the KOSPI and KOSDAQ market. During the collection process, the search keywords were searched through the keywords 'Big data construction', 'Big data introduction', 'Big data investment', 'Big data order', and 'Big data development'. The results of the empirically proved analysis are as follows. First, we found that the market value of 91 publicly listed firms, who announced Big-data investment, increased by 0.92%. In particular, we can see that the market value of finance firms, non-ICT firms, small-cap firms are significantly increased. This result can be interpreted as the market investors perceive positively the big data investment of the enterprise, allowing market investors to better understand the company's big data investment. Second, statistical demonstration that the market value of financial firms and non - ICT firms increases after Big data investment announcement is proved statistically. Third, this study measured the effect of big data investment by dividing by company size and classified it into the top 30% and the bottom 30% of company size standard (market capitalization) without measuring the median value. To maximize the difference. The analysis showed that the investment effect of small sample companies was greater, and the difference between the two groups was also clear. Fourth, one of the most significant features of this study is that the Big Data Investment announcements are classified and structured according to vendor status. We have shown that the investment effect of a group with vendor involvement (with or without a vendor) is very large, indicating that market investors are very positive about the involvement of big data specialist vendors. Lastly but not least, it is also interesting that market investors are evaluating investment more positively at the time of the Big data Investment announcement, which is scheduled to be built rather than completed. Applying this to the industry, it would be effective for a company to make a disclosure when it decided to invest in big data in terms of increasing the market value. Our study has an academic implication, as prior research looked for the impact of Big-data investment has been nonexistent. This study also has a practical implication in that it can be a practical reference material for business decision makers considering big data investment.

A Study on the Use of GIS-based Time Series Spatial Data for Streamflow Depletion Assessment (하천 건천화 평가를 위한 GIS 기반의 시계열 공간자료 활용에 관한 연구)

  • YOO, Jae-Hyun;KIM, Kye-Hyun;PARK, Yong-Gil;LEE, Gi-Hun;KIM, Seong-Joon;JUNG, Chung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.50-63
    • /
    • 2018
  • The rapid urbanization had led to a distortion of natural hydrological cycle system. The change in hydrological cycle structure is causing streamflow depletion, changing the existing use tendency of water resources. To manage such phenomena, a streamflow depletion impact assessment technology to forecast depletion is required. For performing such technology, it is indispensable to build GIS-based spatial data as fundamental data, but there is a shortage of related research. Therefore, this study was conducted to use the use of GIS-based time series spatial data for streamflow depletion assessment. For this study, GIS data over decades of changes on a national scale were constructed, targeting 6 streamflow depletion impact factors (weather, soil depth, forest density, road network, groundwater usage and landuse) and the data were used as the basic data for the operation of continuous hydrologic model. Focusing on these impact factors, the causes for streamflow depletion were analyzed depending on time series. Then, using distributed continuous hydrologic model based DrySAT, annual runoff of each streamflow depletion impact factor was measured and depletion assessment was conducted. As a result, the default value of annual runoff was measured at 977.9mm under the given weather condition without considering other factors. When considering the decrease in soil depth, the increase in forest density, road development, and groundwater usage, along with the change in land use and development, and annual runoff were measured at 1,003.5mm, 942.1mm, 961.9mm, 915.5mm, and 1003.7mm, respectively. The results showed that the major causes of the streaflow depletion were lowered soil depth to decrease the infiltration volume and surface runoff thereby decreasing streamflow; the increased forest density to decrease surface runoff; the increased road network to decrease the sub-surface flow; the increased groundwater use from undiscriminated development to decrease the baseflow; increased impervious areas to increase surface runoff. Also, each standard watershed depending on the grade of depletion was indicated, based on the definition of streamflow depletion and the range of grade. Considering the weather, the decrease in soil depth, the increase in forest density, road development, and groundwater usage, and the change in land use and development, the grade of depletion were 2.1, 2.2, 2.5, 2.3, 2.8, 2.2, respectively. Among the five streamflow depletion impact factors except rainfall condition, the change in groundwater usage showed the biggest influence on depletion, followed by the change in forest density, road construction, land use, and soil depth. In conclusion, it is anticipated that a national streamflow depletion assessment system to be develop in the future would provide customized depletion management and prevention plans based on the system assessment results regarding future data changes of the six streamflow depletion impact factors and the prospect of depletion progress.